Cargando…
Evaluating Cost-Effective Methods for Rapid and Repeatable National Scale Detection and Mapping of Invasive Species Spread
Invasive species can spread rapidly at local and national scales, creating significant environmental and economic impacts. A central problem in mitigation efforts is identifying methods that can rapidly detect invasive species in a cost-effective and repeatable manner. This challenge is particularly...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510748/ https://www.ncbi.nlm.nih.gov/pubmed/31076638 http://dx.doi.org/10.1038/s41598-019-43729-y |
Sumario: | Invasive species can spread rapidly at local and national scales, creating significant environmental and economic impacts. A central problem in mitigation efforts is identifying methods that can rapidly detect invasive species in a cost-effective and repeatable manner. This challenge is particularly acute for species that can spread over large areas (>1 million km(2)). Wild pigs (Sus scrofa) are one of the most prolific invasive mammals on Earth and cause extensive damage to agricultural crops, native ecosystems, and livestock, and are reservoirs of disease. They have spread from their native range in Eurasia and North Africa into large areas of Australia, Africa, South America, and North America. We show that the range of invasive wild pigs has increased exponentially in Canada over the last 27 years following initial and ongoing releases and escapes from domestic wild boar farms. The cumulative range of wild pigs across Canada is 777,783 km(2), with the majority of wild pig distribution occurring in the Prairie Provinces. We evaluate eight different data collection and evaluation/validation methods for mapping invasive species over large areas, and assess their benefits and limitations. Our findings effectively map the spread of a highly invasive large mammal and demonstrate that management efforts should ideally rely on a set of complementary independent monitoring methods. Mapping and evaluating resulting species occurrences provide baseline maps against which future changes can be rapidly evaluated. |
---|