Cargando…
A convolutional neural network-based system to prevent patient misidentification in FDG-PET examinations
Patient misidentification in imaging examinations has become a serious problem in clinical settings. Such misidentification could be prevented if patient characteristics such as sex, age, and body weight could be predicted based on an image of the patient, with an alert issued when a mismatch betwee...
Autores principales: | Kawauchi, Keisuke, Hirata, Kenji, Katoh, Chietsugu, Ichikawa, Seiya, Manabe, Osamu, Kobayashi, Kentaro, Watanabe, Shiro, Furuya, Sho, Shiga, Tohru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510755/ https://www.ncbi.nlm.nih.gov/pubmed/31076620 http://dx.doi.org/10.1038/s41598-019-43656-y |
Ejemplares similares
-
A convolutional neural network-based system to classify patients using FDG PET/CT examinations
por: Kawauchi, Keisuke, et al.
Publicado: (2020) -
A convolutional neural network-based system to estimate the arterial plasma radioactivity curve in (18)F-FDG dynamic brain PET study
por: Kawauchi, Keisuke, et al.
Publicado: (2023) -
A Preliminary Study to Use SUVmax of FDG PET-CT as an Identifier of Lesion for Artificial Intelligence
por: Hirata, Kenji, et al.
Publicado: (2021) -
Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images
por: Kawakami, Masashi, et al.
Publicado: (2020) -
Which is the proper reference tissue for measuring the change in FDG PET metabolic volume of cardiac sarcoidosis before and after steroid therapy?
por: Furuya, Sho, et al.
Publicado: (2018)