Cargando…

T cell migration in microchannels densely packed with T cells

T cells migrate diverse microenvironments of the body to mount antigen-specific immune responses. T cell activation, a key initial process for antigen-specific immune responses, occur in secondary lymphoid organs such as spleens and lymph nodes where high density of T cells migrates rapidly through...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, HyoungJun, Doh, Junsang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510777/
https://www.ncbi.nlm.nih.gov/pubmed/31076592
http://dx.doi.org/10.1038/s41598-019-43569-w
Descripción
Sumario:T cells migrate diverse microenvironments of the body to mount antigen-specific immune responses. T cell activation, a key initial process for antigen-specific immune responses, occur in secondary lymphoid organs such as spleens and lymph nodes where high density of T cells migrates rapidly through the reticular networks formed by stromal cells. In vitro model system recapitulating key characteristics of secondary lymphoid organs, confined spaces densely packed with rapidly migrating cells, would be useful to investigate mechanisms of T cell migration. In this study, we devised a method to fabricate microchannels densely packed with T cells. Microchannel arrays with fixed height (4 μm) and length (1.5 mm) and various widths (15~80 μm) were fabricated in between trapezoid-shaped reservoirs that facilitated T cell sedimentation near microchannel entries. Microchannel surface chemistry and filling time were optimized to achieve high packing density (0.89) of T cell filling within microchannels. Particle image velocimetry (PIV) analysis method was employed to extract velocity field of microchannels densely packed with T cells. Using velocity field information, various motility parameters were further evaluated to quantitatively assess the effects of microchannel width and media tonicity on T cell motility within cell dense microenvironments.