Cargando…

Statistical Properties and Predictability of Extreme Epileptic Events

The use of extreme events theory for the analysis of spontaneous epileptic brain activity is a relevant multidisciplinary problem. It allows deeper understanding of pathological brain functioning and unraveling mechanisms underlying the epileptic seizure emergence along with its predictability. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Frolov, Nikita S., Grubov, Vadim V., Maksimenko, Vladimir A., Lüttjohann, Annika, Makarov, Vladimir V., Pavlov, Alexey N., Sitnikova, Evgenia, Pisarchik, Alexander N., Kurths, Jürgen, Hramov, Alexander E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510789/
https://www.ncbi.nlm.nih.gov/pubmed/31076609
http://dx.doi.org/10.1038/s41598-019-43619-3
_version_ 1783417468440543232
author Frolov, Nikita S.
Grubov, Vadim V.
Maksimenko, Vladimir A.
Lüttjohann, Annika
Makarov, Vladimir V.
Pavlov, Alexey N.
Sitnikova, Evgenia
Pisarchik, Alexander N.
Kurths, Jürgen
Hramov, Alexander E.
author_facet Frolov, Nikita S.
Grubov, Vadim V.
Maksimenko, Vladimir A.
Lüttjohann, Annika
Makarov, Vladimir V.
Pavlov, Alexey N.
Sitnikova, Evgenia
Pisarchik, Alexander N.
Kurths, Jürgen
Hramov, Alexander E.
author_sort Frolov, Nikita S.
collection PubMed
description The use of extreme events theory for the analysis of spontaneous epileptic brain activity is a relevant multidisciplinary problem. It allows deeper understanding of pathological brain functioning and unraveling mechanisms underlying the epileptic seizure emergence along with its predictability. The latter is a desired goal in epileptology which might open the way for new therapies to control and prevent epileptic attacks. With this goal in mind, we applied the extreme event theory for studying statistical properties of electroencephalographic (EEG) recordings of WAG/Rij rats with genetic predisposition to absence epilepsy. Our approach allowed us to reveal extreme events inherent in this pathological spiking activity, highly pronounced in a particular frequency range. The return interval analysis showed that the epileptic seizures exhibit a highly-structural behavior during the active phase of the spiking activity. Obtained results evidenced a possibility for early (up to 7 s) prediction of epileptic seizures based on consideration of EEG statistical properties.
format Online
Article
Text
id pubmed-6510789
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65107892019-05-23 Statistical Properties and Predictability of Extreme Epileptic Events Frolov, Nikita S. Grubov, Vadim V. Maksimenko, Vladimir A. Lüttjohann, Annika Makarov, Vladimir V. Pavlov, Alexey N. Sitnikova, Evgenia Pisarchik, Alexander N. Kurths, Jürgen Hramov, Alexander E. Sci Rep Article The use of extreme events theory for the analysis of spontaneous epileptic brain activity is a relevant multidisciplinary problem. It allows deeper understanding of pathological brain functioning and unraveling mechanisms underlying the epileptic seizure emergence along with its predictability. The latter is a desired goal in epileptology which might open the way for new therapies to control and prevent epileptic attacks. With this goal in mind, we applied the extreme event theory for studying statistical properties of electroencephalographic (EEG) recordings of WAG/Rij rats with genetic predisposition to absence epilepsy. Our approach allowed us to reveal extreme events inherent in this pathological spiking activity, highly pronounced in a particular frequency range. The return interval analysis showed that the epileptic seizures exhibit a highly-structural behavior during the active phase of the spiking activity. Obtained results evidenced a possibility for early (up to 7 s) prediction of epileptic seizures based on consideration of EEG statistical properties. Nature Publishing Group UK 2019-05-10 /pmc/articles/PMC6510789/ /pubmed/31076609 http://dx.doi.org/10.1038/s41598-019-43619-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Frolov, Nikita S.
Grubov, Vadim V.
Maksimenko, Vladimir A.
Lüttjohann, Annika
Makarov, Vladimir V.
Pavlov, Alexey N.
Sitnikova, Evgenia
Pisarchik, Alexander N.
Kurths, Jürgen
Hramov, Alexander E.
Statistical Properties and Predictability of Extreme Epileptic Events
title Statistical Properties and Predictability of Extreme Epileptic Events
title_full Statistical Properties and Predictability of Extreme Epileptic Events
title_fullStr Statistical Properties and Predictability of Extreme Epileptic Events
title_full_unstemmed Statistical Properties and Predictability of Extreme Epileptic Events
title_short Statistical Properties and Predictability of Extreme Epileptic Events
title_sort statistical properties and predictability of extreme epileptic events
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510789/
https://www.ncbi.nlm.nih.gov/pubmed/31076609
http://dx.doi.org/10.1038/s41598-019-43619-3
work_keys_str_mv AT frolovnikitas statisticalpropertiesandpredictabilityofextremeepilepticevents
AT grubovvadimv statisticalpropertiesandpredictabilityofextremeepilepticevents
AT maksimenkovladimira statisticalpropertiesandpredictabilityofextremeepilepticevents
AT luttjohannannika statisticalpropertiesandpredictabilityofextremeepilepticevents
AT makarovvladimirv statisticalpropertiesandpredictabilityofextremeepilepticevents
AT pavlovalexeyn statisticalpropertiesandpredictabilityofextremeepilepticevents
AT sitnikovaevgenia statisticalpropertiesandpredictabilityofextremeepilepticevents
AT pisarchikalexandern statisticalpropertiesandpredictabilityofextremeepilepticevents
AT kurthsjurgen statisticalpropertiesandpredictabilityofextremeepilepticevents
AT hramovalexandere statisticalpropertiesandpredictabilityofextremeepilepticevents