Cargando…
Understanding Image Representations by Measuring Their Equivariance and Equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aimed at filling this gap, we investigate two key mathematical properties of representations: equivariance and...
Autores principales: | Lenc, Karel, Vedaldi, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510825/ https://www.ncbi.nlm.nih.gov/pubmed/31148885 http://dx.doi.org/10.1007/s11263-018-1098-y |
Ejemplares similares
-
Equivariant analytic localization of group representations
por: Smithies, Laura
Publicado: (2001) -
Equivariant multiplicities via representations of quantum affine algebras
por: Casbi, Elie, et al.
Publicado: (2022) -
Learning local equivariant representations for large-scale atomistic dynamics
por: Musaelian, Albert, et al.
Publicado: (2023) -
Equivariant degree theory
por: Ize, Jorge, et al.
Publicado: (2003) -
Multicurves and equivariant cohomology
por: Strickland, NP
Publicado: (2012)