Cargando…

Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets

The Ral GTPases, RalA and RalB, have been implicated in numerous cellular processes, but are most widely known for having regulatory roles in exocytosis. Recently, we demonstrated that deletion of both Ral genes in a platelet-specific mouse gene knockout caused a substantial defect in surface exposu...

Descripción completa

Detalles Bibliográficos
Autores principales: Walsh, Tony G., Wersäll, Andreas, Poole, Alastair W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510928/
https://www.ncbi.nlm.nih.gov/pubmed/30880223
http://dx.doi.org/10.1016/j.cellsig.2019.03.015
_version_ 1783417497718882304
author Walsh, Tony G.
Wersäll, Andreas
Poole, Alastair W.
author_facet Walsh, Tony G.
Wersäll, Andreas
Poole, Alastair W.
author_sort Walsh, Tony G.
collection PubMed
description The Ral GTPases, RalA and RalB, have been implicated in numerous cellular processes, but are most widely known for having regulatory roles in exocytosis. Recently, we demonstrated that deletion of both Ral genes in a platelet-specific mouse gene knockout caused a substantial defect in surface exposure of P-selectin, with only a relatively weak defect in platelet dense granule secretion that did not alter platelet functional responses such as aggregation or thrombus formation. We sought to investigate the function of Rals in human platelets using the recently described Ral inhibitor, RBC8. Initial studies in human platelets confirmed that RBC8 could effectively inhibit Ral GTPase activation, with an IC(50) of 2.2 μM and 2.3 μM for RalA and RalB, respectively. Functional studies using RBC8 revealed significant, dose-dependent inhibition of platelet aggregation, secretion (α- and dense granule), integrin activation and thrombus formation, while α-granule release of platelet factor 4, Ca(2+) signalling or phosphatidylserine exposure were unaltered. Subsequent studies in RalAB-null mouse platelets pretreated with RBC8 showed dose-dependent decreases in integrin activation and dense granule secretion, with significant inhibition of platelet aggregation and P-selectin exposure at 10 μM RBC8. This study strongly suggests therefore that although RBC8 is useful as a Ral inhibitor in platelets, it is likely also to have off-target effects in the same concentration range as for Ral inhibition. So, whilst clearly useful as a Ral inhibitor, interpretation of data needs to take this into account when assessing roles for Rals using RBC8.
format Online
Article
Text
id pubmed-6510928
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier Science Ltd
record_format MEDLINE/PubMed
spelling pubmed-65109282019-07-01 Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets Walsh, Tony G. Wersäll, Andreas Poole, Alastair W. Cell Signal Article The Ral GTPases, RalA and RalB, have been implicated in numerous cellular processes, but are most widely known for having regulatory roles in exocytosis. Recently, we demonstrated that deletion of both Ral genes in a platelet-specific mouse gene knockout caused a substantial defect in surface exposure of P-selectin, with only a relatively weak defect in platelet dense granule secretion that did not alter platelet functional responses such as aggregation or thrombus formation. We sought to investigate the function of Rals in human platelets using the recently described Ral inhibitor, RBC8. Initial studies in human platelets confirmed that RBC8 could effectively inhibit Ral GTPase activation, with an IC(50) of 2.2 μM and 2.3 μM for RalA and RalB, respectively. Functional studies using RBC8 revealed significant, dose-dependent inhibition of platelet aggregation, secretion (α- and dense granule), integrin activation and thrombus formation, while α-granule release of platelet factor 4, Ca(2+) signalling or phosphatidylserine exposure were unaltered. Subsequent studies in RalAB-null mouse platelets pretreated with RBC8 showed dose-dependent decreases in integrin activation and dense granule secretion, with significant inhibition of platelet aggregation and P-selectin exposure at 10 μM RBC8. This study strongly suggests therefore that although RBC8 is useful as a Ral inhibitor in platelets, it is likely also to have off-target effects in the same concentration range as for Ral inhibition. So, whilst clearly useful as a Ral inhibitor, interpretation of data needs to take this into account when assessing roles for Rals using RBC8. Elsevier Science Ltd 2019-07 /pmc/articles/PMC6510928/ /pubmed/30880223 http://dx.doi.org/10.1016/j.cellsig.2019.03.015 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Walsh, Tony G.
Wersäll, Andreas
Poole, Alastair W.
Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets
title Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets
title_full Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets
title_fullStr Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets
title_full_unstemmed Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets
title_short Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets
title_sort characterisation of the ral gtpase inhibitor rbc8 in human and mouse platelets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510928/
https://www.ncbi.nlm.nih.gov/pubmed/30880223
http://dx.doi.org/10.1016/j.cellsig.2019.03.015
work_keys_str_mv AT walshtonyg characterisationoftheralgtpaseinhibitorrbc8inhumanandmouseplatelets
AT wersallandreas characterisationoftheralgtpaseinhibitorrbc8inhumanandmouseplatelets
AT poolealastairw characterisationoftheralgtpaseinhibitorrbc8inhumanandmouseplatelets