Cargando…

Data on the negative regulation of invadopodia activity by MLCK

Actomyosin contractility can promote extracellular matrix (ECM) degradation by invadopodia in cancer cells. However, we previously found that inhibiting myosin light chain kinase (MLCK) with siRNA did not change force generation by the head and neck squamous cell carcinoma (HNSCC) cell line SCC-61....

Descripción completa

Detalles Bibliográficos
Autores principales: Jerrell, Rachel J., Parekh, Aron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510963/
https://www.ncbi.nlm.nih.gov/pubmed/31111082
http://dx.doi.org/10.1016/j.dib.2019.103939
Descripción
Sumario:Actomyosin contractility can promote extracellular matrix (ECM) degradation by invadopodia in cancer cells. However, we previously found that inhibiting myosin light chain kinase (MLCK) with siRNA did not change force generation by the head and neck squamous cell carcinoma (HNSCC) cell line SCC-61. We provide data here that this targeted method of MLCK knockdown (KD) resulted in a significant increase in the amount of ECM degradation, number of actively degrading invadopodia, and the number of total invadopodia formed. These data are related to the research article entitled “Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2” Jerrell and Parekh, 2016.