Cargando…

In silico learning of tumor evolution through mutational time series

Cancer arises through the accumulation of somatic mutations over time. Understanding the sequence of mutation occurrence during cancer progression can assist early and accurate diagnosis and improve clinical decision-making. Here we employ long short-term memory (LSTM) networks, a class of recurrent...

Descripción completa

Detalles Bibliográficos
Autores principales: Auslander, Noam, Wolf, Yuri I., Koonin, Eugene V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510994/
https://www.ncbi.nlm.nih.gov/pubmed/31015295
http://dx.doi.org/10.1073/pnas.1901695116

Ejemplares similares