Cargando…
In silico learning of tumor evolution through mutational time series
Cancer arises through the accumulation of somatic mutations over time. Understanding the sequence of mutation occurrence during cancer progression can assist early and accurate diagnosis and improve clinical decision-making. Here we employ long short-term memory (LSTM) networks, a class of recurrent...
Autores principales: | Auslander, Noam, Wolf, Yuri I., Koonin, Eugene V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510994/ https://www.ncbi.nlm.nih.gov/pubmed/31015295 http://dx.doi.org/10.1073/pnas.1901695116 |
Ejemplares similares
-
Criticality in tumor evolution and clinical outcome
por: Persi, Erez, et al.
Publicado: (2018) -
Physical foundations of biological complexity
por: Wolf, Yuri I., et al.
Publicado: (2018) -
Grammar of protein domain architectures
por: Yu, Lijia, et al.
Publicado: (2019) -
The in silico human surfaceome
por: Bausch-Fluck, Damaris, et al.
Publicado: (2018) -
A major role for noncoding regulatory mutations in the evolution of enzyme activity
por: Loehlin, David W., et al.
Publicado: (2019)