Cargando…
A highly predictive signature of cognition and brain atrophy for progression to Alzheimer's dementia
BACKGROUND: Clinical trials in Alzheimer's disease need to enroll patients whose cognition will decline over time, if left untreated, in order to demonstrate the efficacy of an intervention. Machine learning models used to screen for patients at risk of progression to dementia should therefore...
Autores principales: | Tam, Angela, Dansereau, Christian, Iturria-Medina, Yasser, Urchs, Sebastian, Orban, Pierre, Sharmarke, Hanad, Breitner, John, Bellec, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511068/ https://www.ncbi.nlm.nih.gov/pubmed/31077314 http://dx.doi.org/10.1093/gigascience/giz055 |
Ejemplares similares
-
A dataset of long-term consistency values of resting-state fMRI connectivity maps in a single individual derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol
por: Badhwar, AmanPreet, et al.
Publicado: (2020) -
Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis
por: Badhwar, AmanPreet, et al.
Publicado: (2017) -
Test-retest resting-state fMRI in healthy elderly persons with a family history of Alzheimer’s disease
por: Orban, Pierre, et al.
Publicado: (2015) -
A dataset of multiresolution functional brain parcellations in an elderly population with no or mild cognitive impairment
por: Tam, Angela, et al.
Publicado: (2016) -
Functional connectivity subtypes associate robustly with ASD diagnosis
por: Urchs, Sebastian GW, et al.
Publicado: (2022)