Cargando…

De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers

BACKGROUND: In recent years, massively parallel complementary DNA sequencing (RNA sequencing [RNA-Seq]) has emerged as a fast, cost-effective, and robust technology to study entire transcriptomes in various manners. In particular, for non-model organisms and in the absence of an appropriate referenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Hölzer, Martin, Marz, Manja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511074/
https://www.ncbi.nlm.nih.gov/pubmed/31077315
http://dx.doi.org/10.1093/gigascience/giz039
Descripción
Sumario:BACKGROUND: In recent years, massively parallel complementary DNA sequencing (RNA sequencing [RNA-Seq]) has emerged as a fast, cost-effective, and robust technology to study entire transcriptomes in various manners. In particular, for non-model organisms and in the absence of an appropriate reference genome, RNA-Seq is used to reconstruct the transcriptome de novo. Although the de novo transcriptome assembly of non-model organisms has been on the rise recently and new tools are frequently developing, there is still a knowledge gap about which assembly software should be used to build a comprehensive de novo assembly. RESULTS: Here, we present a large-scale comparative study in which 10 de novo assembly tools are applied to 9 RNA-Seq data sets spanning different kingdoms of life. Overall, we built >200 single assemblies and evaluated their performance on a combination of 20 biological-based and reference-free metrics. Our study is accompanied by a comprehensive and extensible Electronic Supplement that summarizes all data sets, assembly execution instructions, and evaluation results. Trinity, SPAdes, and Trans-ABySS, followed by Bridger and SOAPdenovo-Trans, generally outperformed the other tools compared. Moreover, we observed species-specific differences in the performance of each assembler. No tool delivered the best results for all data sets. CONCLUSIONS: We recommend a careful choice and normalization of evaluation metrics to select the best assembling results as a critical step in the reconstruction of a comprehensive de novo transcriptome assembly.