Cargando…

Significant association between admission serum monocyte chemoattractant protein-1 and early changes in myocardial function in patients with first ST-segment elevation myocardial infarction after primary percutaneous coronary intervention

BACKGROUND: Recent studies have indicated that monocyte chemoattractant protein-1 (MCP-1) plays an important role in the initiation and progression of ischaemic heart disease. However, no previous research has investigated the correlation between serum MCP-1 levels and early changes in myocardial fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yong, Hu, Chengping, Du, Yu, Zhang, Jianwei, Liu, Jinxing, Han, Hongya, Zhao, Yingxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511179/
https://www.ncbi.nlm.nih.gov/pubmed/31077149
http://dx.doi.org/10.1186/s12872-019-1098-z
Descripción
Sumario:BACKGROUND: Recent studies have indicated that monocyte chemoattractant protein-1 (MCP-1) plays an important role in the initiation and progression of ischaemic heart disease. However, no previous research has investigated the correlation between serum MCP-1 levels and early changes in myocardial function in patients with ST-segmental elevation myocardial infarction (STEMI) after primary percutaneous coronary intervention (PCI). METHODS: A total of 87 STEMI patients who had undergone a successful primary PCI were consecutively recruited. All the patients included in this study were grouped into two subgroups according to the median value of MCP-1 upon admission. An early change in left ventricular ejection fraction (LVEF) was defined as (LVEF at 3 months post-STEMI)-(LVEF at 2 days post-STEMI). RESULTS: Serum MCP-1 levels increased gradually over time during the first 72 h after the onset of STEMI. The concentration of hypersensitive cardiac troponin I (hs-cTnI) upon admission as well as at 24 h and 72 h after primary PCI, especially the peak hs-cTnI concentration, declined significantly in the low admission MCP-1 group. As continuous variable, admission MCP-1 also correlated positively with admission hs-cTnI, hs-cTnI at 24 h after primary PCI, and peak hs-cTnI. Additionally, the absolute early change in LVEF improved markedly in the low admission MCP-1 group (3.77% ± 6.05% vs − 0.18% ± 7.69%, p = 0.009) compared to that in the high admission MCP-1 group. Most importantly, the global LVEF in the low admission MCP-1 group also improved significantly at 3 months compared to baseline LVEF (55.79% ± 7.05% vs 59.60% ± 6.51%, p = 0.011), while an improvement in global LVEF was not observed in the high admission MCP-1 group. Furthermore, as a continuous variable, the MCP-1 level up admission also correlated negatively with early changes in LVEF (r = − 0.391, p = 0.001). After assessment by multiple linear regression analysis, the MCP-1 level upon admission remained correlated with early changes in LVEF [beta = − 0.089, 95% CI (− 0.163 to − 0.015), p = 0.020]. CONCLUSION: MCP-1 upon admission not only correlated positively with hs-cTnI at different time points and peak hs-cTnI, but also associated inversely with early improvements in myocardial function in patients with first STEMI. So we speculated that suppression the expression of MCP-1 via various ways may be a promising therapeutic target in myocardial I/R injury in the future.