Cargando…
Inhibition of MSK1 Promotes Inflammation and Apoptosis and Inhibits Functional Recovery After Spinal Cord Injury
Mitogen- and stress-activated kinase (MSK) 1 is a nuclear serine/threonine kinase. In the central nervous system, it plays an important role in regulating cell proliferation and neuronal survival; it is also involved in astrocyte inflammation and the inhibition of inflammatory cytokine production. H...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511344/ https://www.ncbi.nlm.nih.gov/pubmed/30919247 http://dx.doi.org/10.1007/s12031-019-01298-9 |
Sumario: | Mitogen- and stress-activated kinase (MSK) 1 is a nuclear serine/threonine kinase. In the central nervous system, it plays an important role in regulating cell proliferation and neuronal survival; it is also involved in astrocyte inflammation and the inhibition of inflammatory cytokine production. However, its specific role in spinal cord injury is not clear. Here, we aimed to elucidate this role using an in vivo animal model. In this study, we found that MSK1 is gradually decreased, starting 1 day after spinal cord injury and to its lowest level 3 days post-injury, after which it gradually increased. To further investigate the possible function of MSK1 in spinal cord injury, we interfered with its expression by utilizing a small interfering RNA (siRNA)-encoding lentivirus, which was injected into the injured spinal cord to inhibit local expression. After MSK1 inhibition, we found that the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were increased. Moreover, the expression of IL-10 was decreased. In addition, neuronal apoptotic cells were increased significantly and expression of the apoptosis-related protein caspase-3 was also increased. Ultrastructural analysis of nerve cells also revealed typical neuronal apoptosis and severe neuronal damage. Finally, we found that hindlimb motor function decreased significantly with MSK1 knockdown. Therefore, our findings suggest that the inhibition of this protein promotes inflammatory responses and apoptosis and suppresses functional recovery after spinal cord injury. MSK1 might thus play an important role in repair after spinal cord injury by regulating inflammation and apoptosis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s12031-019-01298-9) contains supplementary material, which is available to authorized users. |
---|