Cargando…
Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture
The aim of this study is to design GoogLeNet deep neural network architecture by expanding the kernel size of the inception layer and combining the convolution layers to classify the electrocardiogram (ECG) beats into a normal sinus rhythm, premature ventricular contraction, atrial premature contrac...
Autores principales: | Kim, Jeong-Hwan, Seo, Seung-Yeon, Song, Chul-Gyu, Kim, Kyeong-Seop |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512052/ https://www.ncbi.nlm.nih.gov/pubmed/31183029 http://dx.doi.org/10.1155/2019/2826901 |
Ejemplares similares
-
SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia
por: Siuly, Siuly, et al.
Publicado: (2022) -
Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
por: Xie, Shipeng, et al.
Publicado: (2018) -
Performance Comparisons of AlexNet and GoogLeNet in Cell Growth Inhibition IC50 Prediction
por: Lee, Yeeun, et al.
Publicado: (2021) -
Dynamic ECG signal quality evaluation based on persistent homology and GoogLeNet method
por: Ren, Yonglian, et al.
Publicado: (2023) -
NHL Pathological Image Classification Based on Hierarchical Local Information and GoogLeNet-Based Representations
por: Bai, Jie, et al.
Publicado: (2019)