Cargando…
The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
Animals sense light using photosensitive proteins—rhodopsins—containing a chromophore—retinal—that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue—counter...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513861/ https://www.ncbi.nlm.nih.gov/pubmed/31098413 http://dx.doi.org/10.1038/s42003-019-0409-3 |
_version_ | 1783417778215059456 |
---|---|
author | Nagata, Takashi Koyanagi, Mitsumasa Tsukamoto, Hisao Mutt, Eshita Schertler, Gebhard F. X. Deupi, Xavier Terakita, Akihisa |
author_facet | Nagata, Takashi Koyanagi, Mitsumasa Tsukamoto, Hisao Mutt, Eshita Schertler, Gebhard F. X. Deupi, Xavier Terakita, Akihisa |
author_sort | Nagata, Takashi |
collection | PubMed |
description | Animals sense light using photosensitive proteins—rhodopsins—containing a chromophore—retinal—that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue—counterion—for stabilization. Little is known about how the most common counterion among varied rhodopsins, Glu181, functions. Here, we demonstrate that in a spider visual rhodopsin, orthologue of mammal melanopsins relevant to circadian rhythms, the Glu181 counterion functions likely by forming a hydrogen-bonding network, where Ser186 is a key mediator of the Glu181–SB interaction. We also suggest that upon light activation, the Glu181–SB interaction rearranges while Ser186 changes its contribution. This is in contrast to how the counterion of vertebrate visual rhodopsins, Glu113, functions, which forms a salt bridge with the SB. Our results shed light on the molecular mechanisms of visible light-sensitivity relevant to invertebrate vision and vertebrate non-visual photoreception. |
format | Online Article Text |
id | pubmed-6513861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65138612019-05-16 The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation Nagata, Takashi Koyanagi, Mitsumasa Tsukamoto, Hisao Mutt, Eshita Schertler, Gebhard F. X. Deupi, Xavier Terakita, Akihisa Commun Biol Article Animals sense light using photosensitive proteins—rhodopsins—containing a chromophore—retinal—that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue—counterion—for stabilization. Little is known about how the most common counterion among varied rhodopsins, Glu181, functions. Here, we demonstrate that in a spider visual rhodopsin, orthologue of mammal melanopsins relevant to circadian rhythms, the Glu181 counterion functions likely by forming a hydrogen-bonding network, where Ser186 is a key mediator of the Glu181–SB interaction. We also suggest that upon light activation, the Glu181–SB interaction rearranges while Ser186 changes its contribution. This is in contrast to how the counterion of vertebrate visual rhodopsins, Glu113, functions, which forms a salt bridge with the SB. Our results shed light on the molecular mechanisms of visible light-sensitivity relevant to invertebrate vision and vertebrate non-visual photoreception. Nature Publishing Group UK 2019-05-13 /pmc/articles/PMC6513861/ /pubmed/31098413 http://dx.doi.org/10.1038/s42003-019-0409-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Nagata, Takashi Koyanagi, Mitsumasa Tsukamoto, Hisao Mutt, Eshita Schertler, Gebhard F. X. Deupi, Xavier Terakita, Akihisa The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation |
title | The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation |
title_full | The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation |
title_fullStr | The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation |
title_full_unstemmed | The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation |
title_short | The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation |
title_sort | counterion–retinylidene schiff base interaction of an invertebrate rhodopsin rearranges upon light activation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513861/ https://www.ncbi.nlm.nih.gov/pubmed/31098413 http://dx.doi.org/10.1038/s42003-019-0409-3 |
work_keys_str_mv | AT nagatatakashi thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT koyanagimitsumasa thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT tsukamotohisao thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT mutteshita thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT schertlergebhardfx thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT deupixavier thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT terakitaakihisa thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT nagatatakashi counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT koyanagimitsumasa counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT tsukamotohisao counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT mutteshita counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT schertlergebhardfx counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT deupixavier counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation AT terakitaakihisa counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation |