Cargando…

The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation

Animals sense light using photosensitive proteins—rhodopsins—containing a chromophore—retinal—that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue—counter...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagata, Takashi, Koyanagi, Mitsumasa, Tsukamoto, Hisao, Mutt, Eshita, Schertler, Gebhard F. X., Deupi, Xavier, Terakita, Akihisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513861/
https://www.ncbi.nlm.nih.gov/pubmed/31098413
http://dx.doi.org/10.1038/s42003-019-0409-3
_version_ 1783417778215059456
author Nagata, Takashi
Koyanagi, Mitsumasa
Tsukamoto, Hisao
Mutt, Eshita
Schertler, Gebhard F. X.
Deupi, Xavier
Terakita, Akihisa
author_facet Nagata, Takashi
Koyanagi, Mitsumasa
Tsukamoto, Hisao
Mutt, Eshita
Schertler, Gebhard F. X.
Deupi, Xavier
Terakita, Akihisa
author_sort Nagata, Takashi
collection PubMed
description Animals sense light using photosensitive proteins—rhodopsins—containing a chromophore—retinal—that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue—counterion—for stabilization. Little is known about how the most common counterion among varied rhodopsins, Glu181, functions. Here, we demonstrate that in a spider visual rhodopsin, orthologue of mammal melanopsins relevant to circadian rhythms, the Glu181 counterion functions likely by forming a hydrogen-bonding network, where Ser186 is a key mediator of the Glu181–SB interaction. We also suggest that upon light activation, the Glu181–SB interaction rearranges while Ser186 changes its contribution. This is in contrast to how the counterion of vertebrate visual rhodopsins, Glu113, functions, which forms a salt bridge with the SB. Our results shed light on the molecular mechanisms of visible light-sensitivity relevant to invertebrate vision and vertebrate non-visual photoreception.
format Online
Article
Text
id pubmed-6513861
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65138612019-05-16 The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation Nagata, Takashi Koyanagi, Mitsumasa Tsukamoto, Hisao Mutt, Eshita Schertler, Gebhard F. X. Deupi, Xavier Terakita, Akihisa Commun Biol Article Animals sense light using photosensitive proteins—rhodopsins—containing a chromophore—retinal—that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue—counterion—for stabilization. Little is known about how the most common counterion among varied rhodopsins, Glu181, functions. Here, we demonstrate that in a spider visual rhodopsin, orthologue of mammal melanopsins relevant to circadian rhythms, the Glu181 counterion functions likely by forming a hydrogen-bonding network, where Ser186 is a key mediator of the Glu181–SB interaction. We also suggest that upon light activation, the Glu181–SB interaction rearranges while Ser186 changes its contribution. This is in contrast to how the counterion of vertebrate visual rhodopsins, Glu113, functions, which forms a salt bridge with the SB. Our results shed light on the molecular mechanisms of visible light-sensitivity relevant to invertebrate vision and vertebrate non-visual photoreception. Nature Publishing Group UK 2019-05-13 /pmc/articles/PMC6513861/ /pubmed/31098413 http://dx.doi.org/10.1038/s42003-019-0409-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Nagata, Takashi
Koyanagi, Mitsumasa
Tsukamoto, Hisao
Mutt, Eshita
Schertler, Gebhard F. X.
Deupi, Xavier
Terakita, Akihisa
The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
title The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
title_full The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
title_fullStr The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
title_full_unstemmed The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
title_short The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
title_sort counterion–retinylidene schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513861/
https://www.ncbi.nlm.nih.gov/pubmed/31098413
http://dx.doi.org/10.1038/s42003-019-0409-3
work_keys_str_mv AT nagatatakashi thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT koyanagimitsumasa thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT tsukamotohisao thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT mutteshita thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT schertlergebhardfx thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT deupixavier thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT terakitaakihisa thecounterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT nagatatakashi counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT koyanagimitsumasa counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT tsukamotohisao counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT mutteshita counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT schertlergebhardfx counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT deupixavier counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation
AT terakitaakihisa counterionretinylideneschiffbaseinteractionofaninvertebraterhodopsinrearrangesuponlightactivation