Cargando…
Feature Extraction and Selection for Pain Recognition Using Peripheral Physiological Signals
In pattern recognition, the selection of appropriate features is paramount to both the performance and the robustness of the system. Over-reliance on machine learning-based feature selection methods can, therefore, be problematic; especially when conducted using small snapshots of data. The results...
Autores principales: | Campbell, Evan, Phinyomark, Angkoon, Scheme, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513974/ https://www.ncbi.nlm.nih.gov/pubmed/31133782 http://dx.doi.org/10.3389/fnins.2019.00437 |
Ejemplares similares
-
Deep Cross-User Models Reduce the Training Burden in Myoelectric Control
por: Campbell, Evan, et al.
Publicado: (2021) -
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors
por: Phinyomark, Angkoon, et al.
Publicado: (2018) -
Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity
por: Campbell, Evan, et al.
Publicado: (2020) -
Interpreting Deep Learning Features for Myoelectric Control: A Comparison With Handcrafted Features
por: Côté-Allard, Ulysse, et al.
Publicado: (2020) -
Fractal Analysis of Human Gait Variability via Stride Interval Time Series
por: Phinyomark, Angkoon, et al.
Publicado: (2020)