Cargando…

Phenotypical characterisation of a putative ω-amino acid transaminase in the yeast Scheffersomyces stipitis

Phylogenetic analysis of class III transaminases in the budding yeasts Lachancea kluyveri, Saccharomyces cerevisiae and Scheffersomyces stipitis identified a hitherto uncharacterised Sch. stipitis transaminase encoded by the PICST_54153 gene, which clustered with previously described γ-amino butyric...

Descripción completa

Detalles Bibliográficos
Autor principal: Linder, Tomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514085/
https://www.ncbi.nlm.nih.gov/pubmed/30519708
http://dx.doi.org/10.1007/s00203-018-1608-x
Descripción
Sumario:Phylogenetic analysis of class III transaminases in the budding yeasts Lachancea kluyveri, Saccharomyces cerevisiae and Scheffersomyces stipitis identified a hitherto uncharacterised Sch. stipitis transaminase encoded by the PICST_54153 gene, which clustered with previously described γ-amino butyric acid (GABA) and β-alanine transaminases. Deletion of the PICST_54153 gene in Sch. stipitis resulted in a complete loss in the utilisation of β-alanine and β-ureidopropionic acid as nitrogen sources, while growth on 1,3-diaminopropane displayed a significant lag phase compared to the wild-type control. It was therefore concluded that the Sch. stipitis PICST_54153 gene likely encodes a β-alanine transaminase. However, minor growth defects when 1,4-diaminobutane or 1,5-diaminopentane was provided as the nitrogen source suggested that the Picst_54153 transaminase may also participate in the catabolism of other diamine-derived ω-amino acids. Unexpectedly, the ∆picst_54153 deletion mutant failed to grow on solid minimal medium in the presence of 5 mM β-alanine even if a preferred nitrogen source was provided.