Cargando…
Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile”
With the rapid rising of global population, the demand for improving breeding techniques to greatly increase the worldwide crop production has become more and more urgent. Most researchers believe that the key to new breeding techniques lies in genetic improvement of crops, which leads to a large qu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514377/ https://www.ncbi.nlm.nih.gov/pubmed/31134110 http://dx.doi.org/10.3389/fpls.2019.00554 |
_version_ | 1783417879113236480 |
---|---|
author | Qiu, Quan Sun, Na Bai, He Wang, Ning Fan, Zhengqiang Wang, Yanjun Meng, Zhijun Li, Bin Cong, Yue |
author_facet | Qiu, Quan Sun, Na Bai, He Wang, Ning Fan, Zhengqiang Wang, Yanjun Meng, Zhijun Li, Bin Cong, Yue |
author_sort | Qiu, Quan |
collection | PubMed |
description | With the rapid rising of global population, the demand for improving breeding techniques to greatly increase the worldwide crop production has become more and more urgent. Most researchers believe that the key to new breeding techniques lies in genetic improvement of crops, which leads to a large quantity of phenotyping spots. Unfortunately, current phenotyping solutions are not powerful enough to handle so many spots with satisfying speed and accuracy. As a result, high-throughput phenotyping is drawing more and more attention. In this paper, we propose a new field-based sensing solution to high-throughput phenotyping. We mount a LiDAR (Velodyne HDL64-S3) on a mobile robot, making the robot a “phenomobile.” We develop software for data collection and analysis under Robotic Operating System using open source components and algorithm libraries. Different from conducting phenotyping observations with an in-row and one-by-one manner, our new solution allows the robot to move around the parcel to collect data. Thus, the 3D and 360° view laser scanner can collect phenotyping data for a large plant group at the same time, instead of one by one. Furthermore, no touching interference from the robot would be imposed onto the crops. We conduct experiments for maize plant on two parcels. We implement point cloud merging with landmarks and Iterative Closest Points to cut down the time consumption. We then recognize and compute the morphological phenotyping parameters (row spacing and plant height) of maize plant using depth-band histograms and horizontal point density. We analyze the cloud registration and merging performances, the row spacing detection accuracy, and the single plant height computation accuracy. Experimental results verify the feasibility of the proposed solution. |
format | Online Article Text |
id | pubmed-6514377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65143772019-05-27 Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile” Qiu, Quan Sun, Na Bai, He Wang, Ning Fan, Zhengqiang Wang, Yanjun Meng, Zhijun Li, Bin Cong, Yue Front Plant Sci Plant Science With the rapid rising of global population, the demand for improving breeding techniques to greatly increase the worldwide crop production has become more and more urgent. Most researchers believe that the key to new breeding techniques lies in genetic improvement of crops, which leads to a large quantity of phenotyping spots. Unfortunately, current phenotyping solutions are not powerful enough to handle so many spots with satisfying speed and accuracy. As a result, high-throughput phenotyping is drawing more and more attention. In this paper, we propose a new field-based sensing solution to high-throughput phenotyping. We mount a LiDAR (Velodyne HDL64-S3) on a mobile robot, making the robot a “phenomobile.” We develop software for data collection and analysis under Robotic Operating System using open source components and algorithm libraries. Different from conducting phenotyping observations with an in-row and one-by-one manner, our new solution allows the robot to move around the parcel to collect data. Thus, the 3D and 360° view laser scanner can collect phenotyping data for a large plant group at the same time, instead of one by one. Furthermore, no touching interference from the robot would be imposed onto the crops. We conduct experiments for maize plant on two parcels. We implement point cloud merging with landmarks and Iterative Closest Points to cut down the time consumption. We then recognize and compute the morphological phenotyping parameters (row spacing and plant height) of maize plant using depth-band histograms and horizontal point density. We analyze the cloud registration and merging performances, the row spacing detection accuracy, and the single plant height computation accuracy. Experimental results verify the feasibility of the proposed solution. Frontiers Media S.A. 2019-05-07 /pmc/articles/PMC6514377/ /pubmed/31134110 http://dx.doi.org/10.3389/fpls.2019.00554 Text en Copyright © 2019 Qiu, Sun, Bai, Wang, Fan, Wang, Meng, Li and Cong. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Qiu, Quan Sun, Na Bai, He Wang, Ning Fan, Zhengqiang Wang, Yanjun Meng, Zhijun Li, Bin Cong, Yue Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile” |
title | Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile” |
title_full | Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile” |
title_fullStr | Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile” |
title_full_unstemmed | Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile” |
title_short | Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile” |
title_sort | field-based high-throughput phenotyping for maize plant using 3d lidar point cloud generated with a “phenomobile” |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514377/ https://www.ncbi.nlm.nih.gov/pubmed/31134110 http://dx.doi.org/10.3389/fpls.2019.00554 |
work_keys_str_mv | AT qiuquan fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT sunna fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT baihe fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT wangning fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT fanzhengqiang fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT wangyanjun fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT mengzhijun fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT libin fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile AT congyue fieldbasedhighthroughputphenotypingformaizeplantusing3dlidarpointcloudgeneratedwithaphenomobile |