Cargando…
A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks
Innovative Internet of Things (IoT) applications with strict performance and energy consumption requirements and where the agile collection of data is paramount are arising. Wireless sensor networks (WSNs) represent a promising solution as they can be easily deployed to sense, process, and forward d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514601/ https://www.ncbi.nlm.nih.gov/pubmed/30991701 http://dx.doi.org/10.3390/s19081800 |
_version_ | 1783417906577539072 |
---|---|
author | Brini, Oussama Deslandes, Dominic Nabki, Frederic |
author_facet | Brini, Oussama Deslandes, Dominic Nabki, Frederic |
author_sort | Brini, Oussama |
collection | PubMed |
description | Innovative Internet of Things (IoT) applications with strict performance and energy consumption requirements and where the agile collection of data is paramount are arising. Wireless sensor networks (WSNs) represent a promising solution as they can be easily deployed to sense, process, and forward data. The large number of Sensor Nodes (SNs) composing a WSN are expected to be autonomous, with a node’s lifetime dictated by the battery’s size. As the form factor of the SN is critical in various use cases, minimizing energy consumption while ensuring availability becomes a priority. Moreover, energy harvesting techniques are increasingly considered as a viable solution for building an entirely green SN and prolonging its lifetime. In the process of building a SN and in the absence of a clear and well-rounded methodology, the designer can easily make unfounded and suboptimal decisions about the right hardware components, their configuration, and reliable data communication techniques, such as automatic repeat request (ARQ) and forward error correction (FEC). In this paper, a methodology to design, configure, and deploy a reliable ultra-low power WSNs is proposed. A comprehensive energy model and a realistic path-loss (PL) model of the sensor node are also established. Through estimations and field measurements it is proven that, following the proposed methodology, the designer can thoroughly explore the design space and the make most favorable decisions when choosing commercial off-the-shelf (COTS) components, configuring the node, and deploying a reliable and energy-efficient WSN. |
format | Online Article Text |
id | pubmed-6514601 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65146012019-05-30 A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks Brini, Oussama Deslandes, Dominic Nabki, Frederic Sensors (Basel) Article Innovative Internet of Things (IoT) applications with strict performance and energy consumption requirements and where the agile collection of data is paramount are arising. Wireless sensor networks (WSNs) represent a promising solution as they can be easily deployed to sense, process, and forward data. The large number of Sensor Nodes (SNs) composing a WSN are expected to be autonomous, with a node’s lifetime dictated by the battery’s size. As the form factor of the SN is critical in various use cases, minimizing energy consumption while ensuring availability becomes a priority. Moreover, energy harvesting techniques are increasingly considered as a viable solution for building an entirely green SN and prolonging its lifetime. In the process of building a SN and in the absence of a clear and well-rounded methodology, the designer can easily make unfounded and suboptimal decisions about the right hardware components, their configuration, and reliable data communication techniques, such as automatic repeat request (ARQ) and forward error correction (FEC). In this paper, a methodology to design, configure, and deploy a reliable ultra-low power WSNs is proposed. A comprehensive energy model and a realistic path-loss (PL) model of the sensor node are also established. Through estimations and field measurements it is proven that, following the proposed methodology, the designer can thoroughly explore the design space and the make most favorable decisions when choosing commercial off-the-shelf (COTS) components, configuring the node, and deploying a reliable and energy-efficient WSN. MDPI 2019-04-15 /pmc/articles/PMC6514601/ /pubmed/30991701 http://dx.doi.org/10.3390/s19081800 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Brini, Oussama Deslandes, Dominic Nabki, Frederic A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks |
title | A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks |
title_full | A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks |
title_fullStr | A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks |
title_full_unstemmed | A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks |
title_short | A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks |
title_sort | system-level methodology for the design of reliable low-power wireless sensor networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514601/ https://www.ncbi.nlm.nih.gov/pubmed/30991701 http://dx.doi.org/10.3390/s19081800 |
work_keys_str_mv | AT brinioussama asystemlevelmethodologyforthedesignofreliablelowpowerwirelesssensornetworks AT deslandesdominic asystemlevelmethodologyforthedesignofreliablelowpowerwirelesssensornetworks AT nabkifrederic asystemlevelmethodologyforthedesignofreliablelowpowerwirelesssensornetworks AT brinioussama systemlevelmethodologyforthedesignofreliablelowpowerwirelesssensornetworks AT deslandesdominic systemlevelmethodologyforthedesignofreliablelowpowerwirelesssensornetworks AT nabkifrederic systemlevelmethodologyforthedesignofreliablelowpowerwirelesssensornetworks |