Cargando…

Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization†

Traditionally, how to reduce energy consumption has been an issue of utmost importance in wireless sensor networks. Recently, radio frequency (RF) energy harvesting technologies, which scavenge the ambient RF waves, provided us with a new paradigm for such networks. Without replacement or recharge o...

Descripción completa

Detalles Bibliográficos
Autor principal: Choi, Cheon Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514700/
https://www.ncbi.nlm.nih.gov/pubmed/30995795
http://dx.doi.org/10.3390/s19081822
_version_ 1783417921822785536
author Choi, Cheon Won
author_facet Choi, Cheon Won
author_sort Choi, Cheon Won
collection PubMed
description Traditionally, how to reduce energy consumption has been an issue of utmost importance in wireless sensor networks. Recently, radio frequency (RF) energy harvesting technologies, which scavenge the ambient RF waves, provided us with a new paradigm for such networks. Without replacement or recharge of batteries, an RF energy harvesting wireless sensor network may live an eternal life. Against theoretical expectations, however, energy is scarce in practice and, consequently, structural naiveté has to be within a MAC scheme that supports a sensor node to deliver its data to a sink node. Our practical choice for the MAC scheme is a basic one, rooted in ALOHA, in which a sensor node simply repeats harvesting energy, backing off for a while and transmitting a packet. The basic medium access control (MAC) scheme is not able to perfectly prevent a collision of packets, which in turn deteriorates the throughput. Thus, we derive an exact expression of the throughput that the basic MAC scheme can attain. In various case studies, we then look for a way to enhance the throughput. Using the throughput formula, we reveal that an optimal back-off time, which maximizes the total throughput, is not characterized by the distribution but only by the mean value when the harvest times are deterministic. Also, we confirm that taking proper back-off times is able to improve the throughput even when the harvest times are random. Furthermore, we show that shaping the back-off time so that its variance is increased while its mean remains unchanged can help ameliorate the throughput that the basic MAC scheme is able to achieve.
format Online
Article
Text
id pubmed-6514700
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65147002019-05-30 Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization† Choi, Cheon Won Sensors (Basel) Article Traditionally, how to reduce energy consumption has been an issue of utmost importance in wireless sensor networks. Recently, radio frequency (RF) energy harvesting technologies, which scavenge the ambient RF waves, provided us with a new paradigm for such networks. Without replacement or recharge of batteries, an RF energy harvesting wireless sensor network may live an eternal life. Against theoretical expectations, however, energy is scarce in practice and, consequently, structural naiveté has to be within a MAC scheme that supports a sensor node to deliver its data to a sink node. Our practical choice for the MAC scheme is a basic one, rooted in ALOHA, in which a sensor node simply repeats harvesting energy, backing off for a while and transmitting a packet. The basic medium access control (MAC) scheme is not able to perfectly prevent a collision of packets, which in turn deteriorates the throughput. Thus, we derive an exact expression of the throughput that the basic MAC scheme can attain. In various case studies, we then look for a way to enhance the throughput. Using the throughput formula, we reveal that an optimal back-off time, which maximizes the total throughput, is not characterized by the distribution but only by the mean value when the harvest times are deterministic. Also, we confirm that taking proper back-off times is able to improve the throughput even when the harvest times are random. Furthermore, we show that shaping the back-off time so that its variance is increased while its mean remains unchanged can help ameliorate the throughput that the basic MAC scheme is able to achieve. MDPI 2019-04-16 /pmc/articles/PMC6514700/ /pubmed/30995795 http://dx.doi.org/10.3390/s19081822 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Choi, Cheon Won
Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization†
title Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization†
title_full Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization†
title_fullStr Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization†
title_full_unstemmed Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization†
title_short Basic MAC Scheme for RF Energy Harvesting Wireless Sensor Networks: Throughput Analysis and Optimization†
title_sort basic mac scheme for rf energy harvesting wireless sensor networks: throughput analysis and optimization†
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514700/
https://www.ncbi.nlm.nih.gov/pubmed/30995795
http://dx.doi.org/10.3390/s19081822
work_keys_str_mv AT choicheonwon basicmacschemeforrfenergyharvestingwirelesssensornetworksthroughputanalysisandoptimization