Cargando…
Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks †
IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514710/ https://www.ncbi.nlm.nih.gov/pubmed/31014002 http://dx.doi.org/10.3390/s19081789 |
_version_ | 1783417924135944192 |
---|---|
author | Karalis, Apostolos Zorbas, Dimitrios Douligeris, Christos |
author_facet | Karalis, Apostolos Zorbas, Dimitrios Douligeris, Christos |
author_sort | Karalis, Apostolos |
collection | PubMed |
description | IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15.4-TSCH network relies on the periodic transmissions of network advertising frames called enhanced beacons (EB). The scheduling of EB transmissions plays a crucial role both in the joining time and in the power consumption of the nodes. The existence of collisions between EB is an important factor that negatively affects the performance. In the worst case, all the neighboring EB transmissions of a node may collide, a phenomenon which we call a full collision. Most of the EB scheduling methods that have been proposed in the literature are fully or partially based on randomness in order to create the EB transmission schedule. In this paper, we initially show that the randomness can lead to a considerable probability of collisions, and, especially, of full collisions. Subsequently, we propose a novel autonomous EB scheduling method that eliminates collisions using a simple technique that does not increase the power consumption. To the best of our knowledge, our proposed method is the first non-centralized EB scheduling method that fully eliminates collisions, and this is guaranteed even if there are mobile nodes. To evaluate our method, we compare our proposal with recent and state-of-the-art non-centralized network-advertisement scheduling methods. Our evaluation does not consider only fixed topology networks, but also networks with mobile nodes, a scenario which has not been examined before. The results of our simulations demonstrate the superiority of our method in terms of joining time and energy consumption. |
format | Online Article Text |
id | pubmed-6514710 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65147102019-05-30 Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks † Karalis, Apostolos Zorbas, Dimitrios Douligeris, Christos Sensors (Basel) Article IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15.4-TSCH network relies on the periodic transmissions of network advertising frames called enhanced beacons (EB). The scheduling of EB transmissions plays a crucial role both in the joining time and in the power consumption of the nodes. The existence of collisions between EB is an important factor that negatively affects the performance. In the worst case, all the neighboring EB transmissions of a node may collide, a phenomenon which we call a full collision. Most of the EB scheduling methods that have been proposed in the literature are fully or partially based on randomness in order to create the EB transmission schedule. In this paper, we initially show that the randomness can lead to a considerable probability of collisions, and, especially, of full collisions. Subsequently, we propose a novel autonomous EB scheduling method that eliminates collisions using a simple technique that does not increase the power consumption. To the best of our knowledge, our proposed method is the first non-centralized EB scheduling method that fully eliminates collisions, and this is guaranteed even if there are mobile nodes. To evaluate our method, we compare our proposal with recent and state-of-the-art non-centralized network-advertisement scheduling methods. Our evaluation does not consider only fixed topology networks, but also networks with mobile nodes, a scenario which has not been examined before. The results of our simulations demonstrate the superiority of our method in terms of joining time and energy consumption. MDPI 2019-04-14 /pmc/articles/PMC6514710/ /pubmed/31014002 http://dx.doi.org/10.3390/s19081789 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Karalis, Apostolos Zorbas, Dimitrios Douligeris, Christos Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks † |
title | Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks † |
title_full | Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks † |
title_fullStr | Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks † |
title_full_unstemmed | Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks † |
title_short | Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks † |
title_sort | collision-free advertisement scheduling for ieee 802.15.4-tsch networks † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514710/ https://www.ncbi.nlm.nih.gov/pubmed/31014002 http://dx.doi.org/10.3390/s19081789 |
work_keys_str_mv | AT karalisapostolos collisionfreeadvertisementschedulingforieee802154tschnetworks AT zorbasdimitrios collisionfreeadvertisementschedulingforieee802154tschnetworks AT douligerischristos collisionfreeadvertisementschedulingforieee802154tschnetworks |