Cargando…

Improved Real-Time Facial Expression Recognition Based on a Novel Balanced and Symmetric Local Gradient Coding

In the field of Facial Expression Recognition (FER), traditional local texture coding methods have a low computational complexity, while providing a robust solution with respect to occlusion, illumination, and other factors. However, there is still need for improving the accuracy of these methods wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jucheng, Wang, Xiaojing, Han, Shujie, Wang, Jie, Park, Dong Sun, Wang, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514715/
https://www.ncbi.nlm.nih.gov/pubmed/31013582
http://dx.doi.org/10.3390/s19081899
Descripción
Sumario:In the field of Facial Expression Recognition (FER), traditional local texture coding methods have a low computational complexity, while providing a robust solution with respect to occlusion, illumination, and other factors. However, there is still need for improving the accuracy of these methods while maintaining their real-time nature and low computational complexity. In this paper, we propose a feature-based FER system with a novel local texture coding operator, named central symmetric local gradient coding (CS-LGC), to enhance the performance of real-time systems. It uses four different directional gradients on 5 × 5 grids, and the gradient is computed in the center-symmetric way. The averages of the gradients are used to reduce the sensitivity to noise. These characteristics lead to symmetric of features by the CS-LGC operator, thus providing a better generalization capability in comparison to existing local gradient coding (LGC) variants. The proposed system further transforms the extracted features into an eigen-space using a principal component analysis (PCA) for better representation and less computation; it estimates the intended classes by training an extreme learning machine. The recognition rate for the JAFFE database is 95.24%, whereas that for the CK+ database is 98.33%. The results show that the system has advantages over the existing local texture coding methods.