Cargando…
Intelligent Control of Bulk Tobacco Curing Schedule Using LS-SVM- and ANFIS-Based Multi-Sensor Data Fusion Approaches
The bulk tobacco flue-curing process is followed by a bulk tobacco curing schedule, which is typically pre-set at the beginning and might be adjusted by the curer to accommodate the need for tobacco leaves during curing. In this study, the controlled parameters of a bulk tobacco curing schedule were...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514745/ https://www.ncbi.nlm.nih.gov/pubmed/31013918 http://dx.doi.org/10.3390/s19081778 |
Sumario: | The bulk tobacco flue-curing process is followed by a bulk tobacco curing schedule, which is typically pre-set at the beginning and might be adjusted by the curer to accommodate the need for tobacco leaves during curing. In this study, the controlled parameters of a bulk tobacco curing schedule were presented, which is significant for the systematic modelling of an intelligent tobacco flue-curing process. To fully imitate the curer’s control of the bulk tobacco curing schedule, three types of sensors were applied, namely, a gas sensor, image sensor, and moisture sensor. Feature extraction methods were given forward to extract the odor, image, and moisture features of the tobacco leaves individually. Three multi-sensor data fusion schemes were applied, where a least squares support vector machines (LS-SVM) regression model and adaptive neuro-fuzzy inference system (ANFIS) decision model were used. Four experiments were conducted from July to September 2014, with a total of 603 measurement points, ensuring the results’ robustness and validness. The results demonstrate that a hybrid fusion scheme achieves a superior prediction performance with the coefficients of determination of the controlled parameters, reaching 0.9991, 0.9589, and 0.9479, respectively. The high prediction accuracy made the proposed hybrid fusion scheme a feasible, reliable, and effective method to intelligently control over the tobacco curing schedule. |
---|