Cargando…
mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides
Anticancer peptides (ACPs) are promising therapeutic agents for targeting and killing cancer cells. The accurate prediction of ACPs from given peptide sequences remains as an open problem in the field of immunoinformatics. Recently, machine learning algorithms have emerged as a promising tool for he...
Autores principales: | Boopathi, Vinothini, Subramaniyam, Sathiyamoorthy, Malik, Adeel, Lee, Gwang, Manavalan, Balachandran, Yang, Deok-Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514805/ https://www.ncbi.nlm.nih.gov/pubmed/31013619 http://dx.doi.org/10.3390/ijms20081964 |
Ejemplares similares
-
SortPred: The first machine learning based predictor to identify bacterial sortases and their classes using sequence-derived information
por: Malik, Adeel, et al.
Publicado: (2021) -
Till 2018: a survey of biomolecular sequences in genus Panax
por: Boopathi, Vinothini, et al.
Publicado: (2020) -
MLACP: machine-learning-based prediction of anticancer peptides
por: Manavalan, Balachandran, et al.
Publicado: (2017) -
Extremely-randomized-tree-based Prediction of N(6)-Methyladenosine Sites in Saccharomyces cerevisiae
por: Govindaraj, Rajiv G., et al.
Publicado: (2020) -
PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine
por: Manavalan, Balachandran, et al.
Publicado: (2018)