Cargando…
Transfer Learning Based Fault Diagnosis with Missing Data Due to Multi-Rate Sampling
Deep learning is an effective feature extraction method widely applied in fault diagnosis fields since it can extract fault features potentially involved in multi-sensor data. But different sensors equipped in the system may sample data at different sampling rates, which will inevitably result in a...
Autores principales: | Chen, Danmin, Yang, Shuai, Zhou, Funa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514833/ https://www.ncbi.nlm.nih.gov/pubmed/30999589 http://dx.doi.org/10.3390/s19081826 |
Ejemplares similares
-
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
por: Zhou, Funa, et al.
Publicado: (2018) -
Federated Learning Based Fault Diagnosis Driven by Intra-Client Imbalance Degree
por: Zhou, Funa, et al.
Publicado: (2023) -
Trend Feature Consistency Guided Deep Learning Method for Minor Fault Diagnosis
por: Jia, Pengpeng, et al.
Publicado: (2023) -
Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an Attention Mechanism
por: Liu, Shun, et al.
Publicado: (2023) -
Application of Fault Diagnosis Method Combining Finite Element Method and Transfer Learning for Insufficient Turbine Rotor Fault Samples
por: Zhang, Qinglei, et al.
Publicado: (2023)