Cargando…
Effects of Ca/Si Ratio, Aluminum and Magnesium on the Carbonation Behavior of Calcium Silicate Hydrate
The effects of Ca/Si ratio, aluminum and magnesium on the carbonation behavior of calcium silicate hydrate (C-S-H) were investigated by using X-ray powder diffraction (XRD), nuclear magnetic resonance (NMR) and thermogravimetric analyzer (TGA). The results showed that the Ca/Si ratio, Al/Si ratio an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514930/ https://www.ncbi.nlm.nih.gov/pubmed/31003418 http://dx.doi.org/10.3390/ma12081268 |
Sumario: | The effects of Ca/Si ratio, aluminum and magnesium on the carbonation behavior of calcium silicate hydrate (C-S-H) were investigated by using X-ray powder diffraction (XRD), nuclear magnetic resonance (NMR) and thermogravimetric analyzer (TGA). The results showed that the Ca/Si ratio, Al/Si ratio and Mg/Si ratio had a significant influence on the structure, carbonation products and carbonation resistance of C-(M)-(A)-S-H. The mean chain length of silicate chains in C-S-H increased as the Ca/Si ratio decreased. Aluminum uptake in C-S-H increased the content of bridging silicate tetrahedron (Q(2)). A cross-linked structure (Q(3)) appeared when magnesium uptake in C-S-H. The carbonation product of C-S-H was vaterite if the Ca/Si ratio was lower than 0.87. The carbonation products of C-S-H were vaterite and calcite if the Ca/Si ratio was higher than 1.02. C-M-S-H had more polymerized units, stronger bond strength and better carbonation resistance than C-S-H. |
---|