Cargando…
A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations
The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514940/ https://www.ncbi.nlm.nih.gov/pubmed/31003566 http://dx.doi.org/10.3390/ijms20081925 |
_version_ | 1783417976966348800 |
---|---|
author | Tsitko, Irina Wiik-Miettinen, Fanny Mattila, Outi Rosa-Sibakov, Natalia Seppänen-Laakso, Tuulikki Maukonen, Johanna Nordlund, Emilia Saarela, Maria |
author_facet | Tsitko, Irina Wiik-Miettinen, Fanny Mattila, Outi Rosa-Sibakov, Natalia Seppänen-Laakso, Tuulikki Maukonen, Johanna Nordlund, Emilia Saarela, Maria |
author_sort | Tsitko, Irina |
collection | PubMed |
description | The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%. |
format | Online Article Text |
id | pubmed-6514940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65149402019-05-30 A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations Tsitko, Irina Wiik-Miettinen, Fanny Mattila, Outi Rosa-Sibakov, Natalia Seppänen-Laakso, Tuulikki Maukonen, Johanna Nordlund, Emilia Saarela, Maria Int J Mol Sci Article The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%. MDPI 2019-04-18 /pmc/articles/PMC6514940/ /pubmed/31003566 http://dx.doi.org/10.3390/ijms20081925 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tsitko, Irina Wiik-Miettinen, Fanny Mattila, Outi Rosa-Sibakov, Natalia Seppänen-Laakso, Tuulikki Maukonen, Johanna Nordlund, Emilia Saarela, Maria A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations |
title | A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations |
title_full | A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations |
title_fullStr | A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations |
title_full_unstemmed | A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations |
title_short | A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations |
title_sort | small in vitro fermentation model for screening the gut microbiota effects of different fiber preparations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514940/ https://www.ncbi.nlm.nih.gov/pubmed/31003566 http://dx.doi.org/10.3390/ijms20081925 |
work_keys_str_mv | AT tsitkoirina asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT wiikmiettinenfanny asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT mattilaouti asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT rosasibakovnatalia asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT seppanenlaaksotuulikki asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT maukonenjohanna asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT nordlundemilia asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT saarelamaria asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT tsitkoirina smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT wiikmiettinenfanny smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT mattilaouti smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT rosasibakovnatalia smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT seppanenlaaksotuulikki smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT maukonenjohanna smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT nordlundemilia smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations AT saarelamaria smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations |