Cargando…

A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations

The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, o...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsitko, Irina, Wiik-Miettinen, Fanny, Mattila, Outi, Rosa-Sibakov, Natalia, Seppänen-Laakso, Tuulikki, Maukonen, Johanna, Nordlund, Emilia, Saarela, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514940/
https://www.ncbi.nlm.nih.gov/pubmed/31003566
http://dx.doi.org/10.3390/ijms20081925
_version_ 1783417976966348800
author Tsitko, Irina
Wiik-Miettinen, Fanny
Mattila, Outi
Rosa-Sibakov, Natalia
Seppänen-Laakso, Tuulikki
Maukonen, Johanna
Nordlund, Emilia
Saarela, Maria
author_facet Tsitko, Irina
Wiik-Miettinen, Fanny
Mattila, Outi
Rosa-Sibakov, Natalia
Seppänen-Laakso, Tuulikki
Maukonen, Johanna
Nordlund, Emilia
Saarela, Maria
author_sort Tsitko, Irina
collection PubMed
description The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.
format Online
Article
Text
id pubmed-6514940
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65149402019-05-30 A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations Tsitko, Irina Wiik-Miettinen, Fanny Mattila, Outi Rosa-Sibakov, Natalia Seppänen-Laakso, Tuulikki Maukonen, Johanna Nordlund, Emilia Saarela, Maria Int J Mol Sci Article The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%. MDPI 2019-04-18 /pmc/articles/PMC6514940/ /pubmed/31003566 http://dx.doi.org/10.3390/ijms20081925 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tsitko, Irina
Wiik-Miettinen, Fanny
Mattila, Outi
Rosa-Sibakov, Natalia
Seppänen-Laakso, Tuulikki
Maukonen, Johanna
Nordlund, Emilia
Saarela, Maria
A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations
title A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations
title_full A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations
title_fullStr A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations
title_full_unstemmed A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations
title_short A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations
title_sort small in vitro fermentation model for screening the gut microbiota effects of different fiber preparations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514940/
https://www.ncbi.nlm.nih.gov/pubmed/31003566
http://dx.doi.org/10.3390/ijms20081925
work_keys_str_mv AT tsitkoirina asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT wiikmiettinenfanny asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT mattilaouti asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT rosasibakovnatalia asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT seppanenlaaksotuulikki asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT maukonenjohanna asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT nordlundemilia asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT saarelamaria asmallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT tsitkoirina smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT wiikmiettinenfanny smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT mattilaouti smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT rosasibakovnatalia smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT seppanenlaaksotuulikki smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT maukonenjohanna smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT nordlundemilia smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations
AT saarelamaria smallinvitrofermentationmodelforscreeningthegutmicrobiotaeffectsofdifferentfiberpreparations