Cargando…

Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study

(1) Background: Measuring joint range of motion has traditionally occurred with a universal goniometer or expensive laboratory based kinematic analysis systems. Technological advances in wearable inertial measurement units (IMU) enables limb motion to be measured with a small portable electronic dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Rigoni, Michael, Gill, Stephen, Babazadeh, Sina, Elsewaisy, Osama, Gillies, Hugh, Nguyen, Nhan, Pathirana, Pubudu N., Page, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514956/
https://www.ncbi.nlm.nih.gov/pubmed/31013931
http://dx.doi.org/10.3390/s19081781
Descripción
Sumario:(1) Background: Measuring joint range of motion has traditionally occurred with a universal goniometer or expensive laboratory based kinematic analysis systems. Technological advances in wearable inertial measurement units (IMU) enables limb motion to be measured with a small portable electronic device. This paper aims to validate an IMU, the ‘Biokin’, for measuring shoulder range of motion in healthy adults; (2) Methods: Thirty participants completed four shoulder movements (forward flexion, abduction, and internal and external rotation) on each shoulder. Each movement was assessed with a goniometer and the IMU by two testers independently. The extent of agreement between each tester’s goniometer and IMU measurements was assessed with intra-class correlation coefficients (ICC) and Bland-Altman 95% limits of agreement (LOA). Secondary analysis compared agreement between tester’s goniometer or IMU measurements (inter-rater reliability) using ICC’s and LOA; (3) Results: Goniometer and IMU measurements for all movements showed high levels of agreement when taken by the same tester; ICCs > 0.90 and LOAs < ±5 degrees. Inter-rater reliability was lower; ICCs ranged between 0.71 to 0.89 and LOAs were outside a prior defined acceptable LOAs (i.e., > ±5 degrees); (4) Conclusions: The current study provides preliminary evidence of the concurrent validity of the Biokin IMU for assessing shoulder movements, but only when a single tester took measurements. Further testing of the Biokin’s psychometric properties is required before it can be confidently used in routine clinical practice and research settings.