Cargando…
Improved Reconstruction of MR Scanned Images by Using a Dictionary Learning Scheme
The application of compressed sensing (CS) to biomedical imaging is sensational since it permits a rationally accurate reconstruction of images by exploiting the image sparsity. The quality of CS reconstruction methods largely depends on the use of various sparsifying transforms, such as wavelets, c...
Autores principales: | Ikram, Shahid, Shah, Jawad Ali, Zubair, Syed, Qureshi, Ijaz Mansoor, Bilal, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514997/ https://www.ncbi.nlm.nih.gov/pubmed/31018597 http://dx.doi.org/10.3390/s19081918 |
Ejemplares similares
-
Reduction of Motion Artifacts in the Recovery of Undersampled DCE MR Images Using Data Binning and L+S Decomposition
por: Bilal, Muhammad, et al.
Publicado: (2019) -
Radial Undersampling-Based Interpolation Scheme for Multislice CSMRI Reconstruction Techniques
por: Murad, Maria, et al.
Publicado: (2021) -
Iterative Schemes to Solve Low-Dimensional Calibration Equations in Parallel MR Image Reconstruction with GRAPPA
por: Inam, Omair, et al.
Publicado: (2017) -
A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction
por: Liu, Qiegen, et al.
Publicado: (2014) -
Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint
por: Gu, Xiaoqing, et al.
Publicado: (2021)