Cargando…

Inhibition of Human Platelet Aggregation and Low-Density Lipoprotein Oxidation by Premna foetida Extract and Its Major Compounds

Many Premna species have been used in traditional medicine to treat hypertension and cardiac insufficiency, and as a tonic for cardiac-related problems. Some have been reported to possess cardiovascular protective activity through several possible mechanisms, but not Premna foetida. In the present s...

Descripción completa

Detalles Bibliográficos
Autores principales: Dianita, Roza, Jantan, Ibrahim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514998/
https://www.ncbi.nlm.nih.gov/pubmed/31013947
http://dx.doi.org/10.3390/molecules24081469
Descripción
Sumario:Many Premna species have been used in traditional medicine to treat hypertension and cardiac insufficiency, and as a tonic for cardiac-related problems. Some have been reported to possess cardiovascular protective activity through several possible mechanisms, but not Premna foetida. In the present study, the methanol extract of P. foetida leaves (PFM) and its isolated compounds were evaluated for their ability to inhibit copper-mediated human low-density lipoprotein (LDL) oxidation and arachidonic acid (AA)- and adenosine diphosphate (ADP)-induced platelet aggregation. Six flavonoids, three triterpenoids, vanillic acid and stigmasterol were successfully isolated from PFM. Of the isolated compounds, quercetin was the most active against LDL oxidation (IC(50) 4.25 µM). The flavonols were more active than the flavones against LDL oxidation, suggesting that hydroxyl group at C-3 and the catechol moiety at B-ring may play important roles in protecting LDL from oxidation. Most tested flavonoids showed stronger inhibition towards AA-induced than the ADP-induced platelet aggregation with apigenin exhibiting the strongest effect (IC(50) 52.3 and 127.4 µM, respectively) while quercetin and kaempferol showed moderate activity. The results suggested that flavonoids, especially quercetin, apigenin and kaempferol were among the major constituents of P. foetida responsible for anti-LDL oxidation and anti-platelet aggregation.