Cargando…
Combining Segmentation and Edge Detection for Efficient Ore Grain Detection in an Electromagnetic Mill Classification System
This paper presents a machine vision method for detection and classification of copper ore grains. We proposed a new method that combines both seeded regions growing segmentation and edge detection, where region growing is limited only to grain boundaries. First, a 2D Fast Fourier Transform (2DFFT)...
Autores principales: | Budzan, Sebastian, Buchczik, Dariusz, Pawełczyk, Marek, Tůma, Jiří |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515149/ https://www.ncbi.nlm.nih.gov/pubmed/30991763 http://dx.doi.org/10.3390/s19081805 |
Ejemplares similares
-
Measurement-Based Modelling of Material Moisture and Particle Classification for Control of Copper Ore Dry Grinding Process
por: Krauze, Oliwia, et al.
Publicado: (2021) -
Moisture Determination for Fine-Sized Copper Ore by Computer Vision and Thermovision Methods
por: Buchczik, Dariusz, et al.
Publicado: (2023) -
Deep Learning Approach at the Edge to Detect Iron Ore Type
por: Klippel, Emerson, et al.
Publicado: (2021) -
Radiation monitoring in the mining and milling of radioactive ores
por: International Atomic Energy Agency. Vienna
Publicado: (1989) -
Safe management of wastes from the mining and milling of Uranium and Thorium ores
por: International Atomic Energy Agency. Vienna
Publicado: (1987)