Cargando…
Characterized Bioelectric Signals by Means of Neural Networks and Wavelets to Remotely Control a Human-Machine Interface
Everyday, people interact with different types of human machine interfaces, and the use of them is increasing, thus, it is necessary to design interfaces which are capable of responding in an intelligent, natural, inexpensive, and accessible way, regardless of social, cultural, economic, or physical...
Autores principales: | Tinoco Varela, David, Gudiño Peñaloza, Fernando, Villaseñor Rodelas, Carolina Jeanette |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515184/ https://www.ncbi.nlm.nih.gov/pubmed/31022847 http://dx.doi.org/10.3390/s19081923 |
Ejemplares similares
-
Design and Implementation of a Prosthesis System Controlled by Electromyographic Signals Means, Characterized with Artificial Neural Networks
por: Tinoco-Varela, David, et al.
Publicado: (2022) -
Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces
por: Jiang, Yuanwen, et al.
Publicado: (2016) -
Capturing spike train temporal pattern with wavelet average coefficient for brain machine interface
por: Wen, Shixian, et al.
Publicado: (2021) -
Steering a Tractor by Means of an EMG-Based Human-Machine Interface
por: Gomez-Gil, Jaime, et al.
Publicado: (2011) -
Remote forwarding of human-machine interfaces for industrial controls
por: Wulles, Pierre
Publicado: (2018)