Cargando…
Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes
In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (<0.1 bar); however, large stacks with non-parallel flow patterns and/or a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515201/ https://www.ncbi.nlm.nih.gov/pubmed/31013943 http://dx.doi.org/10.3390/ijms20081840 |
_version_ | 1783418036819066880 |
---|---|
author | Battaglia, Giuseppe Gurreri, Luigi Airò Farulla, Girolama Cipollina, Andrea Pirrotta, Antonina Micale, Giorgio Ciofalo, Michele |
author_facet | Battaglia, Giuseppe Gurreri, Luigi Airò Farulla, Girolama Cipollina, Andrea Pirrotta, Antonina Micale, Giorgio Ciofalo, Michele |
author_sort | Battaglia, Giuseppe |
collection | PubMed |
description | In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (<0.1 bar); however, large stacks with non-parallel flow patterns and/or asymmetric configurations can exhibit higher TMP values, causing membrane deformations and changes in fluid dynamics and transport phenomena. In this work, integrated mechanical and fluid dynamics simulations were performed to investigate the TMP effects on deformation, flow and mass transfer for a profiled membrane-fluid channel system with geometrical and mechanical features and fluid velocities representative of ED/RED conditions. First, a conservatively high value of TMP was assumed, and mechanical simulations were conducted to identify the geometry with the largest pitch to height ratio still able to bear this load without exhibiting a contact between opposite membranes. The selected geometry was then investigated under expansion and compression conditions in a TMP range encompassing most practical applications. Finally, friction and mass transfer coefficients in the deformed channel were predicted by computational fluid dynamics. Significant effects of membrane deformation were observed: friction and mass transfer coefficients increased in the compressed channel, while they decreased (though to a lesser extent) in the expanded channel. |
format | Online Article Text |
id | pubmed-6515201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65152012019-05-30 Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes Battaglia, Giuseppe Gurreri, Luigi Airò Farulla, Girolama Cipollina, Andrea Pirrotta, Antonina Micale, Giorgio Ciofalo, Michele Int J Mol Sci Article In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (<0.1 bar); however, large stacks with non-parallel flow patterns and/or asymmetric configurations can exhibit higher TMP values, causing membrane deformations and changes in fluid dynamics and transport phenomena. In this work, integrated mechanical and fluid dynamics simulations were performed to investigate the TMP effects on deformation, flow and mass transfer for a profiled membrane-fluid channel system with geometrical and mechanical features and fluid velocities representative of ED/RED conditions. First, a conservatively high value of TMP was assumed, and mechanical simulations were conducted to identify the geometry with the largest pitch to height ratio still able to bear this load without exhibiting a contact between opposite membranes. The selected geometry was then investigated under expansion and compression conditions in a TMP range encompassing most practical applications. Finally, friction and mass transfer coefficients in the deformed channel were predicted by computational fluid dynamics. Significant effects of membrane deformation were observed: friction and mass transfer coefficients increased in the compressed channel, while they decreased (though to a lesser extent) in the expanded channel. MDPI 2019-04-13 /pmc/articles/PMC6515201/ /pubmed/31013943 http://dx.doi.org/10.3390/ijms20081840 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Battaglia, Giuseppe Gurreri, Luigi Airò Farulla, Girolama Cipollina, Andrea Pirrotta, Antonina Micale, Giorgio Ciofalo, Michele Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes |
title | Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes |
title_full | Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes |
title_fullStr | Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes |
title_full_unstemmed | Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes |
title_short | Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes |
title_sort | membrane deformation and its effects on flow and mass transfer in the electromembrane processes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515201/ https://www.ncbi.nlm.nih.gov/pubmed/31013943 http://dx.doi.org/10.3390/ijms20081840 |
work_keys_str_mv | AT battagliagiuseppe membranedeformationanditseffectsonflowandmasstransferintheelectromembraneprocesses AT gurreriluigi membranedeformationanditseffectsonflowandmasstransferintheelectromembraneprocesses AT airofarullagirolama membranedeformationanditseffectsonflowandmasstransferintheelectromembraneprocesses AT cipollinaandrea membranedeformationanditseffectsonflowandmasstransferintheelectromembraneprocesses AT pirrottaantonina membranedeformationanditseffectsonflowandmasstransferintheelectromembraneprocesses AT micalegiorgio membranedeformationanditseffectsonflowandmasstransferintheelectromembraneprocesses AT ciofalomichele membranedeformationanditseffectsonflowandmasstransferintheelectromembraneprocesses |