Cargando…
Signal in Space Error and Ephemeris Validity Time Evaluation of Milena and Doresa Galileo Satellites †
In August 2016, Milena (E14) and Doresa (E18) satellites started to broadcast ephemeris in navigation message for testing purposes. If these satellites could be used, an improvement in the position accuracy would be achieved. A small error in the ephemeris would impact the accuracy of positioning up...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515225/ https://www.ncbi.nlm.nih.gov/pubmed/31013977 http://dx.doi.org/10.3390/s19081786 |
Sumario: | In August 2016, Milena (E14) and Doresa (E18) satellites started to broadcast ephemeris in navigation message for testing purposes. If these satellites could be used, an improvement in the position accuracy would be achieved. A small error in the ephemeris would impact the accuracy of positioning up to ±2.5 m, thus orbit error must be assessed. The ephemeris quality was evaluated by calculating the SISE(orbit) (in orbit Signal In Space Error) using six different ephemeris validity time thresholds (14,400 s, 10,800 s, 7200 s, 3600 s, 1800 s, and 900 s). Two different periods of 2018 were analyzed by using IGS products: DOYs 52–71 and DOYs 172–191. For the first period, two different types of ephemeris were used: those received in IGS YEL2 station and the BRDM ones. Milena (E14) and Doresa (E18) satellites show a higher SISE(orbit) than the others. If validity time is reduced, the SISE(orbit) RMS of Milena (E14) and Doresa (E18) greatly decreases differently from the other satellites, for which the improvement, although present, is small. Milena (E14) and Doresa (E18) reach a SISE(orbit) RMS of about 1 m (comparable to that of the other Galileo satellites reach with the nominal validity time) when validity time of 1800 s is used. Therefore, using this threshold, the two satellites could be used to improve single point positioning accuracy. |
---|