Cargando…
Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection
The reliability of gas insulated switchgear (GIS) is very important for the safe operation of power systems. However, the research on potential faults of GIS is mainly focused on partial discharge, and the research on the intelligent detection technology of the mechanical state of GIS is very scarce...
Autores principales: | Yuan, Yang, Ma, Suliang, Wu, Jianwen, Jia, Bowen, Li, Weixin, Luo, Xiaowu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515278/ https://www.ncbi.nlm.nih.gov/pubmed/31027269 http://dx.doi.org/10.3390/s19081949 |
Ejemplares similares
-
Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest
por: Ma, Suliang, et al.
Publicado: (2018) -
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
por: Li, Chuan, et al.
Publicado: (2016) -
Planetary Gear Fault Diagnosis via Feature Image Extraction Based on Multi Central Frequencies and Vibration Signal Frequency Spectrum
por: Li, Yong, et al.
Publicado: (2018) -
A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
por: Duan, Dawei, et al.
Publicado: (2022) -
Introducing geographic information systems with ArcGIS: a workbook approach to learning GIS
por: Kennedy, Michael
Publicado: (2013)