Cargando…

Measurement and Analysis of Near-Ground Propagation Models under Different Terrains for Wireless Sensor Networks

The propagation model is an essential component in the design and deployment of a wireless sensor network (WSN). Although much attention has been given to near-ground propagation models, few studies place the transceiver directly on the ground with the height of antennas at the level of a few centim...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Weisheng, Ma, Xiaoyuan, Wei, Jianming, Wang, Zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515328/
https://www.ncbi.nlm.nih.gov/pubmed/31013589
http://dx.doi.org/10.3390/s19081901
Descripción
Sumario:The propagation model is an essential component in the design and deployment of a wireless sensor network (WSN). Although much attention has been given to near-ground propagation models, few studies place the transceiver directly on the ground with the height of antennas at the level of a few centimeters, which is a more realistic deployment scenario for WSNs. We measured the Received Signal Strength Indication (RSSI) of these truly near-ground WSNs at 470 MHz under four different terrains, namely flat concrete road, flat grass and two derived scenarios, and obtained the corresponding path loss models. By comprehensive analysis of the influence of different antenna heights and terrain factors, we showed the limit of existing theoretical models and proposed a propagation model selection strategy to more accurately reflect the true characteristics of the near-ground wireless channels for WSNs. In addition, we implemented these models on Cooja simulator and showed that simplistic theoretical models would induce great inaccuracy of network connectivity estimation.