Cargando…

In Vivo Model Systems for Hepatitis B Virus Research

[Image: see text] Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortega-Prieto, Ana Maria, Cherry, Catherine, Gunn, Harry, Dorner, Marcus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515358/
https://www.ncbi.nlm.nih.gov/pubmed/30539633
http://dx.doi.org/10.1021/acsinfecdis.8b00223
Descripción
Sumario:[Image: see text] Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.