Cargando…
Real-Time Classification of Multivariate Olfaction Data Using Spiking Neural Networks
Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and pow...
Autores principales: | Vanarse, Anup, Osseiran, Adam, Rassau, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515392/ https://www.ncbi.nlm.nih.gov/pubmed/31003417 http://dx.doi.org/10.3390/s19081841 |
Ejemplares similares
-
Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification
por: Vanarse, Anup, et al.
Publicado: (2020) -
An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems
por: Vanarse, Anup, et al.
Publicado: (2017) -
A Hardware-Deployable Neuromorphic Solution for Encoding and Classification of Electronic Nose Data
por: Vanarse, Anup, et al.
Publicado: (2019) -
A Review of Current Neuromorphic Approaches for Vision, Auditory, and Olfactory Sensors
por: Vanarse, Anup, et al.
Publicado: (2016) -
Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts
por: Vanarse, Anup, et al.
Publicado: (2022)