Cargando…
Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity
The most vital step in the development of novel and existing surface acoustic wave (SAW)-based sensors and transducers is their design and optimization. Demand for SAW devices has been steadily increasing due to their low cost, portability, and versatility in electronics, telecommunications, and bio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515406/ https://www.ncbi.nlm.nih.gov/pubmed/31013700 http://dx.doi.org/10.3390/s19081749 |
_version_ | 1783418084554440704 |
---|---|
author | Wang, Tao Green, Ryan Guldiken, Rasim Wang, Jing Mohapatra, Subhra Mohapatra, Shyam S. |
author_facet | Wang, Tao Green, Ryan Guldiken, Rasim Wang, Jing Mohapatra, Subhra Mohapatra, Shyam S. |
author_sort | Wang, Tao |
collection | PubMed |
description | The most vital step in the development of novel and existing surface acoustic wave (SAW)-based sensors and transducers is their design and optimization. Demand for SAW devices has been steadily increasing due to their low cost, portability, and versatility in electronics, telecommunications, and biosensor applications. However, a full characterization of surface acoustic wave biosensors in a three-dimensional (3D) finite element model has not yet been developed. In this study, a novel approach is developed for analyzing shear horizontal Love wave resonator devices. The developed modeling methodology was verified using fabricated devices. A thorough analysis of the 3D model and the experimental device was performed in this study including scattering parameters (S-parameters), reflection coefficient parameters, transmission parameters, and phase velocity. The simulated results will be used as a design guideline for future device design and optimization, which has thus far resulted in close matching between prediction and experimental results. This manuscript is the first to demonstrate a 3D finite element model to correlate the sensitivity of the SAW device with the magnitude of the phase shift, the real and imaginary part of the response, insertion loss, and the frequency shift. The results show that the imaginary part of the response shift has a higher sensitivity compared to other parameters. |
format | Online Article Text |
id | pubmed-6515406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65154062019-05-30 Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity Wang, Tao Green, Ryan Guldiken, Rasim Wang, Jing Mohapatra, Subhra Mohapatra, Shyam S. Sensors (Basel) Article The most vital step in the development of novel and existing surface acoustic wave (SAW)-based sensors and transducers is their design and optimization. Demand for SAW devices has been steadily increasing due to their low cost, portability, and versatility in electronics, telecommunications, and biosensor applications. However, a full characterization of surface acoustic wave biosensors in a three-dimensional (3D) finite element model has not yet been developed. In this study, a novel approach is developed for analyzing shear horizontal Love wave resonator devices. The developed modeling methodology was verified using fabricated devices. A thorough analysis of the 3D model and the experimental device was performed in this study including scattering parameters (S-parameters), reflection coefficient parameters, transmission parameters, and phase velocity. The simulated results will be used as a design guideline for future device design and optimization, which has thus far resulted in close matching between prediction and experimental results. This manuscript is the first to demonstrate a 3D finite element model to correlate the sensitivity of the SAW device with the magnitude of the phase shift, the real and imaginary part of the response, insertion loss, and the frequency shift. The results show that the imaginary part of the response shift has a higher sensitivity compared to other parameters. MDPI 2019-04-12 /pmc/articles/PMC6515406/ /pubmed/31013700 http://dx.doi.org/10.3390/s19081749 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Tao Green, Ryan Guldiken, Rasim Wang, Jing Mohapatra, Subhra Mohapatra, Shyam S. Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity |
title | Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity |
title_full | Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity |
title_fullStr | Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity |
title_full_unstemmed | Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity |
title_short | Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity |
title_sort | finite element analysis for surface acoustic wave device characteristic properties and sensitivity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515406/ https://www.ncbi.nlm.nih.gov/pubmed/31013700 http://dx.doi.org/10.3390/s19081749 |
work_keys_str_mv | AT wangtao finiteelementanalysisforsurfaceacousticwavedevicecharacteristicpropertiesandsensitivity AT greenryan finiteelementanalysisforsurfaceacousticwavedevicecharacteristicpropertiesandsensitivity AT guldikenrasim finiteelementanalysisforsurfaceacousticwavedevicecharacteristicpropertiesandsensitivity AT wangjing finiteelementanalysisforsurfaceacousticwavedevicecharacteristicpropertiesandsensitivity AT mohapatrasubhra finiteelementanalysisforsurfaceacousticwavedevicecharacteristicpropertiesandsensitivity AT mohapatrashyams finiteelementanalysisforsurfaceacousticwavedevicecharacteristicpropertiesandsensitivity |