Cargando…

Calcined Oyster Shell Powder as an Expansive Additive in Cement Mortar

The present study prepared calcined oyster shell powder having chemical composition and crystal structure of calcium oxide and lime, respectively, and investigated the fresh and hardened properties of cement mortar incorporating calcined oyster shell powder as an additive. The test results indicated...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Joon Ho, Park, Sol Moi, Yang, Beom Joo, Jang, Jeong Gook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515437/
https://www.ncbi.nlm.nih.gov/pubmed/31018545
http://dx.doi.org/10.3390/ma12081322
Descripción
Sumario:The present study prepared calcined oyster shell powder having chemical composition and crystal structure of calcium oxide and lime, respectively, and investigated the fresh and hardened properties of cement mortar incorporating calcined oyster shell powder as an additive. The test results indicated that the hydration of calcined oyster shell powder promoted the additional formation of Ca(OH)(2) at the initial reaction stage, thereby increasing the heat of hydration. In particular, the volumetric increase of calcined oyster shell powder during hydration compensated the autogenous shrinkage of mortar at early ages, ultimately leading to a clear difference in the shrinkage values at final readings. However, an excessive incorporation of calcined oyster shell powder affected the rate of C–S–H formation in the acceleratory period of hydration, resulting in a decrease in the compressive strength development. Meanwhile, the degree of flow loss was inconsequential and rapid flow loss was not observed in the specimens with calcined oyster shell powder. Therefore, considering the fresh and hardened properties of cement mortar, the incorporation of calcined oyster shell powder of approximately 3% by weight of cement is recommended to enhance the properties of cement mortar in terms of compressive strength and autogenous shrinkage.