Cargando…
Quantifying risk factors in medical reports with a context-aware linear model
OBJECTIVE: We seek to quantify the mortality risk associated with mentions of medical concepts in textual electronic health records (EHRs). Recognizing mentions of named entities of relevant types (eg, conditions, symptoms, laboratory tests or behaviors) in text is a well-researched task. However, d...
Autores principales: | Przybyła, Piotr, Brockmeier, Austin J, Ananiadou, Sophia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515525/ https://www.ncbi.nlm.nih.gov/pubmed/30840055 http://dx.doi.org/10.1093/jamia/ocz004 |
Ejemplares similares
-
Thalia: semantic search engine for biomedical abstracts
por: Soto, Axel J, et al.
Publicado: (2019) -
Improving reference prioritisation with PICO recognition
por: Brockmeier, Austin J., et al.
Publicado: (2019) -
An ensemble of neural models for nested adverse drug events and medication extraction with subwords
por: Ju, Meizhi, et al.
Publicado: (2019) -
A semi-supervised approach using label propagation to support citation screening
por: Kontonatsios, Georgios, et al.
Publicado: (2017) -
BioVAE: a pre-trained latent variable language model for biomedical text mining
por: Trieu, Hai-Long, et al.
Publicado: (2021)