Cargando…

A 3D Coverage Algorithm Based on Complex Surfaces for UAVs in Wireless Multimedia Sensor Networks

Following the development of wireless multimedia sensor networks (WMSN), the coverage of the sensors in the network constitutes one of the key technologies that have a significant influence on the monitoring ability, quality of service, and network lifetime. The application environment of WMSN is al...

Descripción completa

Detalles Bibliográficos
Autores principales: Ru, Jingyu, Jia, Zixi, Yang, Yufang, Yu, Xiaosheng, Wu, Chengdong, Xu, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515563/
https://www.ncbi.nlm.nih.gov/pubmed/31013613
http://dx.doi.org/10.3390/s19081902
Descripción
Sumario:Following the development of wireless multimedia sensor networks (WMSN), the coverage of the sensors in the network constitutes one of the key technologies that have a significant influence on the monitoring ability, quality of service, and network lifetime. The application environment of WMSN is always a complex surface, such as a hilly surface, that would likely cause monitoring shadowing problems. In this study, a new coverage-enhancing algorithm is presented to achieve an optimal coverage ratio of WMSN based on three-dimensional (3D) complex surfaces. By aiming at the complex surface, the use of a 3D sensing model, including a sensor monitoring model and a surface map calculation algorithm, is proposed to calculate the WMSN coverage information in an accurate manner. The coverage base map allowed the efficient estimation of the degree of monitoring occlusion efficiently and improved the system’s accuracy. To meet the requests of complex 3D surface monitoring tasks for multiple sensors, we propose a modified cuckoo search algorithm that considers the features of the WMSN coverage problem and combines the survival of the fittest, dynamic discovery probability, and the self-adaptation strategy of rotation. The evaluation outcomes demonstrate that the proposed algorithm can describe the 3D covering field but also improve both the coverage quality and efficiency of the WMSN on a complex surface.