Cargando…
Machine learning to refine decision making within a syndromic surveillance service
BACKGROUND: Worldwide, syndromic surveillance is increasingly used for improved and timely situational awareness and early identification of public health threats. Syndromic data streams are fed into detection algorithms, which produce statistical alarms highlighting potential activity of public hea...
Autores principales: | Lake, I. R., Colón-González, F. J., Barker, G. C., Morbey, R. A., Smith, G. E., Elliot, A. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515660/ https://www.ncbi.nlm.nih.gov/pubmed/31088446 http://dx.doi.org/10.1186/s12889-019-6916-9 |
Ejemplares similares
-
A methodological framework for the evaluation of syndromic surveillance systems: a case study of England
por: Colón-González, Felipe J., et al.
Publicado: (2018) -
Comparison of statistical algorithms for daily syndromic surveillance aberration detection
por: Noufaily, Angela, et al.
Publicado: (2019) -
Comparison of statistical algorithms for syndromic surveillance
aberration detection
por: Morbey, Roger, et al.
Publicado: (2018) -
Using real-time syndromic surveillance to monitor the health effects of air
pollution
por: Harcourt, Sally, et al.
Publicado: (2018) -
Can syndromic surveillance help forecast winter hospital bed pressures in England?
por: Morbey, Roger A., et al.
Publicado: (2020)