Cargando…
Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes
[Image: see text] Perovskite nanoplatelets (NPls) hold promise for light-emitting applications, having achieved photoluminescence quantum efficiencies approaching unity in the blue wavelength range, where other metal-halide perovskites have typically been ineffective. However, the external quantum e...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516044/ https://www.ncbi.nlm.nih.gov/pubmed/31119197 http://dx.doi.org/10.1021/acsenergylett.9b00571 |
Sumario: | [Image: see text] Perovskite nanoplatelets (NPls) hold promise for light-emitting applications, having achieved photoluminescence quantum efficiencies approaching unity in the blue wavelength range, where other metal-halide perovskites have typically been ineffective. However, the external quantum efficiencies (EQEs) of blue-emitting NPl light-emitting diodes (LEDs) have reached only 0.12%. In this work, we show that NPl LEDs are primarily limited by a poor electronic interface between the emitter and hole injector. We show that the NPls have remarkably deep ionization potentials (≥6.5 eV), leading to large barriers for hole injection, as well as substantial nonradiative decay at the NPl/hole-injector interface. We find that an effective way to reduce these nonradiative losses is by using poly(triarylamine) interlayers, which lead to an increase in the EQE of the blue (464 nm emission wavelength) and sky-blue (489 nm emission wavelength) LEDs to 0.3% and 0.55%, respectively. Our work also identifies the key challenges for further efficiency increases. |
---|