Cargando…
Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention
BACKGROUNDS: Reducing toxicants transplacental rates could contribute to the prevention of congenital heart defects (CHDs). Placental P-glycoprotein (P-gp) plays a vital role in fetal toxicants exposure and subsequently affects the risk of toxicants-induced birth defects. However, data on the role o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516658/ https://www.ncbi.nlm.nih.gov/pubmed/31086358 http://dx.doi.org/10.1371/journal.pone.0214873 |
_version_ | 1783418226017828864 |
---|---|
author | Tang, Changqing Luo, Chunyan Hua, Yimin Zhou, Kaiyu Duan, Hongyu Ma, Fan Zhang, Yi Li, Yifei Qiu, Dajian Wang, Chuan |
author_facet | Tang, Changqing Luo, Chunyan Hua, Yimin Zhou, Kaiyu Duan, Hongyu Ma, Fan Zhang, Yi Li, Yifei Qiu, Dajian Wang, Chuan |
author_sort | Tang, Changqing |
collection | PubMed |
description | BACKGROUNDS: Reducing toxicants transplacental rates could contribute to the prevention of congenital heart defects (CHDs). Placental P-glycoprotein (P-gp) plays a vital role in fetal toxicants exposure and subsequently affects the risk of toxicants-induced birth defects. However, data on the role of placental P-gp in decreasing toxicants-induced cardiac anomalies is extremely limited. This study aimed to explore the protective role of placental P-gp in reducing the risk of Di-(2-ethylhexyl)-phthalate (DEHP) induced cardiac anomalies in mice. METHODS: The C57BL mice were randomly divided into four groups: the vehicle group (corn oil, n = 10), 500mg/Kg DEHP group (n = 15), 3mg/Kg verapamil group (n = 10) and 500mg/Kg DEHP & 3mg/Kg verapamil group (n = 20). Pregnant dams in different group received respective intervention by gavage once daily from E6.5–14.5. Maternal weights were monitored every day and samples were collected at E15.5. HE staining was used to examine fetal cardiac malformations. Real-time quantitative PCR (RT-qPCR) and Western-Blot were applied to detect Nkx2.5/Gata4/Tbx5/Mef2c/Chf1 mRNA and protein expression, respectively. The mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) was also determined using RT-qPCR. RESULTS: Co-administration of verapamil and DEHP significantly elevated fetal cardiac malformation rates, in comparison with the DEHP group, the verapamil group and the vehicle group. Different phenotypes of cardiac anomalies, including septal defects and ventricular myocardium noncompaction, were noted both in the DEHP group and the DEHP & verapamil group. The ventricular myocardium noncompaction appeared to be more severe in the DEHP & verapamil group. Fetal cardiac PPARγ mRNA expression was notably increased and Gata4/Mef2c/Chf1 expression was markedly decreased in the DEHP & verapamil group. CONCLUSION: Placental P-gp inhibition enhances susceptibility to DEHP induced cardiac malformations in mice. |
format | Online Article Text |
id | pubmed-6516658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65166582019-05-31 Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention Tang, Changqing Luo, Chunyan Hua, Yimin Zhou, Kaiyu Duan, Hongyu Ma, Fan Zhang, Yi Li, Yifei Qiu, Dajian Wang, Chuan PLoS One Research Article BACKGROUNDS: Reducing toxicants transplacental rates could contribute to the prevention of congenital heart defects (CHDs). Placental P-glycoprotein (P-gp) plays a vital role in fetal toxicants exposure and subsequently affects the risk of toxicants-induced birth defects. However, data on the role of placental P-gp in decreasing toxicants-induced cardiac anomalies is extremely limited. This study aimed to explore the protective role of placental P-gp in reducing the risk of Di-(2-ethylhexyl)-phthalate (DEHP) induced cardiac anomalies in mice. METHODS: The C57BL mice were randomly divided into four groups: the vehicle group (corn oil, n = 10), 500mg/Kg DEHP group (n = 15), 3mg/Kg verapamil group (n = 10) and 500mg/Kg DEHP & 3mg/Kg verapamil group (n = 20). Pregnant dams in different group received respective intervention by gavage once daily from E6.5–14.5. Maternal weights were monitored every day and samples were collected at E15.5. HE staining was used to examine fetal cardiac malformations. Real-time quantitative PCR (RT-qPCR) and Western-Blot were applied to detect Nkx2.5/Gata4/Tbx5/Mef2c/Chf1 mRNA and protein expression, respectively. The mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) was also determined using RT-qPCR. RESULTS: Co-administration of verapamil and DEHP significantly elevated fetal cardiac malformation rates, in comparison with the DEHP group, the verapamil group and the vehicle group. Different phenotypes of cardiac anomalies, including septal defects and ventricular myocardium noncompaction, were noted both in the DEHP group and the DEHP & verapamil group. The ventricular myocardium noncompaction appeared to be more severe in the DEHP & verapamil group. Fetal cardiac PPARγ mRNA expression was notably increased and Gata4/Mef2c/Chf1 expression was markedly decreased in the DEHP & verapamil group. CONCLUSION: Placental P-gp inhibition enhances susceptibility to DEHP induced cardiac malformations in mice. Public Library of Science 2019-05-14 /pmc/articles/PMC6516658/ /pubmed/31086358 http://dx.doi.org/10.1371/journal.pone.0214873 Text en © 2019 Tang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tang, Changqing Luo, Chunyan Hua, Yimin Zhou, Kaiyu Duan, Hongyu Ma, Fan Zhang, Yi Li, Yifei Qiu, Dajian Wang, Chuan Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention |
title | Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention |
title_full | Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention |
title_fullStr | Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention |
title_full_unstemmed | Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention |
title_short | Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention |
title_sort | placental p-glycoprotein inhibition enhances susceptibility to di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: a possibly promising target for congenital heart defects prevention |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516658/ https://www.ncbi.nlm.nih.gov/pubmed/31086358 http://dx.doi.org/10.1371/journal.pone.0214873 |
work_keys_str_mv | AT tangchangqing placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT luochunyan placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT huayimin placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT zhoukaiyu placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT duanhongyu placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT mafan placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT zhangyi placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT liyifei placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT qiudajian placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention AT wangchuan placentalpglycoproteininhibitionenhancessusceptibilitytodi2ethylhexylphthalateinducedcardiacmalformationsinmiceapossiblypromisingtargetforcongenitalheartdefectsprevention |