Cargando…
Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment
This study evaluated the effectiveness of a commercially available Ascophyllum nodosum alkaline extract as a plant growth stimulant and defense elicitor against foliar diseases of tomato and sweet pepper caused by Xanthomonas campestris pv. vesicatoria and Alternaria solani in a tropical environment...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516672/ https://www.ncbi.nlm.nih.gov/pubmed/31086398 http://dx.doi.org/10.1371/journal.pone.0216710 |
Sumario: | This study evaluated the effectiveness of a commercially available Ascophyllum nodosum alkaline extract as a plant growth stimulant and defense elicitor against foliar diseases of tomato and sweet pepper caused by Xanthomonas campestris pv. vesicatoria and Alternaria solani in a tropical environment. Foliar applications of 0.5% A. nodosum extract (AN) at 10-day intervals resulted in significant (P < 0.05) increase in plant growth parameters, including plant height (40%), leaf number (50%), plant dry biomass (52%), root length (59%) and chlorophyll content (20%) compared to control. Treated plants also had a significantly higher number of flower clusters, flower numbers, fruits per cluster and total harvested fruit yield. The Ascophyllum extract significantly (P < 0.05) reduced disease incidence by the pathogens in both crops under greenhouse and field conditions. The combinatory treatment of seaweed extract and a minimum dose of contact fungicide in field trials, recorded the overall lowest disease levels (60% reduction) and highest yield (57% increase). Investigations into the mechanisms of disease suppression revealed the effects of the extract in inducing the activities of defense-related enzymes including phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, chitinase and β-1,3-glucanase, as well as the levels of total phenolic compounds. The effect on SA, JA and ET-mediated signalling defense pathways was examined by quantifying expression levels of marker genes including PR1-a, PinII and ETR-1, for the above pathways respectively. Both crop plants treated with A. nodosum extract had significantly higher expression levels of the PinII and ETR-1 marker genes than controls. This was coupled with a marked increase in gene transcripts involved in auxin (IAA), gibberellin (Ga2Ox) and cytokinin (IPT) biosynthesis, which provides possible evidence for induced growth in plants treated with AN extract. Cross-talks between growth and defense responses as a result of seaweed extract application could evidently implicate the benefits of seaweed extract usage in sustainable crop production. |
---|