Cargando…
DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks
Automated protein function prediction is critical for the annotation of uncharacterized protein sequences, where accurate prediction methods are still required. Recently, deep learning based methods have outperformed conventional algorithms in computer vision and natural language processing due to t...
Autores principales: | Sureyya Rifaioglu, Ahmet, Doğan, Tunca, Jesus Martin, Maria, Cetin-Atalay, Rengul, Atalay, Volkan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517386/ https://www.ncbi.nlm.nih.gov/pubmed/31089211 http://dx.doi.org/10.1038/s41598-019-43708-3 |
Ejemplares similares
-
Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2018) -
DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2020) -
ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature
por: Dalkiran, Alperen, et al.
Publicado: (2018) -
Transfer learning for drug–target interaction prediction
por: Dalkıran, Alperen, et al.
Publicado: (2023) -
CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations
por: Doğan, Tunca, et al.
Publicado: (2021)