Cargando…
A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling
The detection of foodborne pathogenic microorganisms is an essential issue in molecular diagnostics. Fluorescence-based assays have been widely utilized in molecular diagnostics because of their ability to detect and measure low analyte concentrations. However, conventional fluorescence-based assays...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517456/ https://www.ncbi.nlm.nih.gov/pubmed/31089914 http://dx.doi.org/10.1186/s40580-019-0186-1 |
_version_ | 1783418280632909824 |
---|---|
author | Kim, Dong Woo Chun, Hyeong Jin Kim, Jae-Ho Yoon, Hyunjin Yoon, Hyun C. |
author_facet | Kim, Dong Woo Chun, Hyeong Jin Kim, Jae-Ho Yoon, Hyunjin Yoon, Hyun C. |
author_sort | Kim, Dong Woo |
collection | PubMed |
description | The detection of foodborne pathogenic microorganisms is an essential issue in molecular diagnostics. Fluorescence-based assays have been widely utilized in molecular diagnostics because of their ability to detect and measure low analyte concentrations. However, conventional fluorescence-based assays require sophisticated optics systems, such as a specific light source and light filter. To overcome these limitations, we developed an optical sensing system using a retroreflective Janus microparticle (RJP) as a signaling probe. Compared to fluorescent dyes, RJPs have the advantage of not requiring complicated optic systems because they can be observed using visible light without a filter. To confirm that RJPs can be used as a probe for molecular diagnostics, Salmonella was detected using a biotinylated stem-loop DNA probe to capture the target gene DNA and a streptavidin-conjugated RJP (SA-RJP) as the detection molecule. When the target gene DNA was present at the sensing surface where the stem-loop DNA probe was immobilized, the biotinylated stem-loop DNA probe was stretched, exposing biotin, which can react with SA-RJP. Since the amount of exposed biotin increased according to the concentration of the applied target gene DNA, the number of observed RJPs on the sensing surface increased with the concentration of the target gene DNA. Consequently, the concentration of Salmonella could be quantitated by counting the number of observed RJPs. Using this system, Salmonella at concentrations ranging from 0 to 100 nM could be analyzed, with high sensitivity and selectivity, with a limit of detection of 2.48 pM. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40580-019-0186-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6517456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-65174562019-05-29 A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling Kim, Dong Woo Chun, Hyeong Jin Kim, Jae-Ho Yoon, Hyunjin Yoon, Hyun C. Nano Converg Letters The detection of foodborne pathogenic microorganisms is an essential issue in molecular diagnostics. Fluorescence-based assays have been widely utilized in molecular diagnostics because of their ability to detect and measure low analyte concentrations. However, conventional fluorescence-based assays require sophisticated optics systems, such as a specific light source and light filter. To overcome these limitations, we developed an optical sensing system using a retroreflective Janus microparticle (RJP) as a signaling probe. Compared to fluorescent dyes, RJPs have the advantage of not requiring complicated optic systems because they can be observed using visible light without a filter. To confirm that RJPs can be used as a probe for molecular diagnostics, Salmonella was detected using a biotinylated stem-loop DNA probe to capture the target gene DNA and a streptavidin-conjugated RJP (SA-RJP) as the detection molecule. When the target gene DNA was present at the sensing surface where the stem-loop DNA probe was immobilized, the biotinylated stem-loop DNA probe was stretched, exposing biotin, which can react with SA-RJP. Since the amount of exposed biotin increased according to the concentration of the applied target gene DNA, the number of observed RJPs on the sensing surface increased with the concentration of the target gene DNA. Consequently, the concentration of Salmonella could be quantitated by counting the number of observed RJPs. Using this system, Salmonella at concentrations ranging from 0 to 100 nM could be analyzed, with high sensitivity and selectivity, with a limit of detection of 2.48 pM. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40580-019-0186-1) contains supplementary material, which is available to authorized users. Springer Singapore 2019-05-15 /pmc/articles/PMC6517456/ /pubmed/31089914 http://dx.doi.org/10.1186/s40580-019-0186-1 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Letters Kim, Dong Woo Chun, Hyeong Jin Kim, Jae-Ho Yoon, Hyunjin Yoon, Hyun C. A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling |
title | A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling |
title_full | A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling |
title_fullStr | A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling |
title_full_unstemmed | A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling |
title_short | A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling |
title_sort | non-spectroscopic optical biosensor for the detection of pathogenic salmonella typhimurium based on a stem-loop dna probe and retro-reflective signaling |
topic | Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517456/ https://www.ncbi.nlm.nih.gov/pubmed/31089914 http://dx.doi.org/10.1186/s40580-019-0186-1 |
work_keys_str_mv | AT kimdongwoo anonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT chunhyeongjin anonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT kimjaeho anonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT yoonhyunjin anonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT yoonhyunc anonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT kimdongwoo nonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT chunhyeongjin nonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT kimjaeho nonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT yoonhyunjin nonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling AT yoonhyunc nonspectroscopicopticalbiosensorforthedetectionofpathogenicsalmonellatyphimuriumbasedonastemloopdnaprobeandretroreflectivesignaling |