Cargando…

Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development

Early life stimuli during critical developmental time frames have been linked to increased risk for neurodevelopmental disorders later in life. The serotonergic system of the brain is implicated in mood disorders and is impacted by the duration of daylight, or photoperiod. Here we sought to investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Siemann, Justin K., Green, Noah H., Reddy, Nikhil, McMahon, Douglas G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517556/
https://www.ncbi.nlm.nih.gov/pubmed/31133791
http://dx.doi.org/10.3389/fnins.2019.00459
_version_ 1783418302028054528
author Siemann, Justin K.
Green, Noah H.
Reddy, Nikhil
McMahon, Douglas G.
author_facet Siemann, Justin K.
Green, Noah H.
Reddy, Nikhil
McMahon, Douglas G.
author_sort Siemann, Justin K.
collection PubMed
description Early life stimuli during critical developmental time frames have been linked to increased risk for neurodevelopmental disorders later in life. The serotonergic system of the brain is implicated in mood disorders and is impacted by the duration of daylight, or photoperiod. Here we sought to investigate sensitive periods of prenatal and postnatal development for photoperiodic programming of DRN serotonin neurons, midbrain serotonin and metabolite levels along with affective behaviors in adolescence (P30) or adulthood (P50). To address these questions we restricted the interval of exposure to prenatal development (E0-P0) for Long summer-like photoperiods (LD 16:8), or Short winter-like photoperiods (LD 8:16) with postnatal development and maturation then occurring under the opposing photoperiod. Prenatal exposure alone to Long photoperiods was sufficient to fully program increased excitability of DRN serotonin neurons into adolescence and adulthood, similar to maintained exposure to Long photoperiods throughout development. Interestingly, Long photoperiod exposure can elevate serotonin and its’ corresponding metabolite levels along with reducing affective behavior, which appear to have both pre and postnatal origins. Thus, exposure to Long photoperiods prenatally programs increased DRN serotonin neuronal excitability, but this step is insufficient to program serotonin signaling and affective behavior. Continuing influence of Long photoperiods during postnatal development then modulates serotonergic content and has protective effects for depressive-like behavior. Photoperiodic programing of serotonin function in mice appears to be a sequential process with programing of neuronal excitability as a first step occurring prenatally, while programing of circuit level serotonin signaling and behavior extends into the postnatal period.
format Online
Article
Text
id pubmed-6517556
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-65175562019-05-27 Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development Siemann, Justin K. Green, Noah H. Reddy, Nikhil McMahon, Douglas G. Front Neurosci Neuroscience Early life stimuli during critical developmental time frames have been linked to increased risk for neurodevelopmental disorders later in life. The serotonergic system of the brain is implicated in mood disorders and is impacted by the duration of daylight, or photoperiod. Here we sought to investigate sensitive periods of prenatal and postnatal development for photoperiodic programming of DRN serotonin neurons, midbrain serotonin and metabolite levels along with affective behaviors in adolescence (P30) or adulthood (P50). To address these questions we restricted the interval of exposure to prenatal development (E0-P0) for Long summer-like photoperiods (LD 16:8), or Short winter-like photoperiods (LD 8:16) with postnatal development and maturation then occurring under the opposing photoperiod. Prenatal exposure alone to Long photoperiods was sufficient to fully program increased excitability of DRN serotonin neurons into adolescence and adulthood, similar to maintained exposure to Long photoperiods throughout development. Interestingly, Long photoperiod exposure can elevate serotonin and its’ corresponding metabolite levels along with reducing affective behavior, which appear to have both pre and postnatal origins. Thus, exposure to Long photoperiods prenatally programs increased DRN serotonin neuronal excitability, but this step is insufficient to program serotonin signaling and affective behavior. Continuing influence of Long photoperiods during postnatal development then modulates serotonergic content and has protective effects for depressive-like behavior. Photoperiodic programing of serotonin function in mice appears to be a sequential process with programing of neuronal excitability as a first step occurring prenatally, while programing of circuit level serotonin signaling and behavior extends into the postnatal period. Frontiers Media S.A. 2019-05-08 /pmc/articles/PMC6517556/ /pubmed/31133791 http://dx.doi.org/10.3389/fnins.2019.00459 Text en Copyright © 2019 Siemann, Green, Reddy and McMahon. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Siemann, Justin K.
Green, Noah H.
Reddy, Nikhil
McMahon, Douglas G.
Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development
title Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development
title_full Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development
title_fullStr Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development
title_full_unstemmed Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development
title_short Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development
title_sort sequential photoperiodic programing of serotonin neurons, signaling and behaviors during prenatal and postnatal development
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517556/
https://www.ncbi.nlm.nih.gov/pubmed/31133791
http://dx.doi.org/10.3389/fnins.2019.00459
work_keys_str_mv AT siemannjustink sequentialphotoperiodicprogramingofserotoninneuronssignalingandbehaviorsduringprenatalandpostnataldevelopment
AT greennoahh sequentialphotoperiodicprogramingofserotoninneuronssignalingandbehaviorsduringprenatalandpostnataldevelopment
AT reddynikhil sequentialphotoperiodicprogramingofserotoninneuronssignalingandbehaviorsduringprenatalandpostnataldevelopment
AT mcmahondouglasg sequentialphotoperiodicprogramingofserotoninneuronssignalingandbehaviorsduringprenatalandpostnataldevelopment