Cargando…
Development of Artificial Intelligence to Support Needle Electromyography Diagnostic Analysis
OBJECTIVES: This study proposes a method for classifying three types of resting membrane potential signals obtained as images through diagnostic needle electromyography (EMG) using TensorFlow-Slim and Python to implement an artificial-intelligence-based image recognition scheme. METHODS: Waveform im...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517633/ https://www.ncbi.nlm.nih.gov/pubmed/31131148 http://dx.doi.org/10.4258/hir.2019.25.2.131 |
Sumario: | OBJECTIVES: This study proposes a method for classifying three types of resting membrane potential signals obtained as images through diagnostic needle electromyography (EMG) using TensorFlow-Slim and Python to implement an artificial-intelligence-based image recognition scheme. METHODS: Waveform images of an abnormal resting membrane potential generated by diagnostic needle EMG were classified into three types—positive sharp waves (PSW), fibrillations (Fibs), and Others—using the TensorFlow-Slim image classification model library. A total of 4,015 raw waveform data instances were reviewed, with 8,576 waveform images subsequently collected for training. Images were learned repeatedly through a convolutional neural network. Each selected waveform image was classified into one of the aforementioned categories according to the learned results. RESULTS: The classification model, Inception v4, was used to divide waveform images into three categories (accuracy = 93.8%, precision = 99.5%, recall = 90.8%). This was done by applying the pretrained Inception v4 model to a fine-tuning method. The image recognition model was created for training using various types of image-based medical data. CONCLUSIONS: The TensorFlow-Slim library can be used to train and recognize image data, such as EMG waveforms, through simple coding rather than by applying TensorFlow. It is expected that a convolutional neural network can be applied to image data such as the waveforms of electrophysiological signals in a body based on this study. |
---|