Cargando…
[18F]Florbetapir positron emission tomography: identification of muscle amyloid in inclusion body myositis and differentiation from polymyositis
OBJECTIVES: With the tools available currently, confirming the diagnosis of inclusion body myositis (IBM) can be difficult. Many patients are initially misdiagnosed with polymyositis (PM). In this observational study at a UK adult neuromuscular centre, we investigated whether amyloid positron emissi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517800/ https://www.ncbi.nlm.nih.gov/pubmed/30760470 http://dx.doi.org/10.1136/annrheumdis-2018-214644 |
Sumario: | OBJECTIVES: With the tools available currently, confirming the diagnosis of inclusion body myositis (IBM) can be difficult. Many patients are initially misdiagnosed with polymyositis (PM). In this observational study at a UK adult neuromuscular centre, we investigated whether amyloid positron emission tomography could differentiate between IBM and PM. METHODS: Ten patients with IBM and six with PM underwent clinical review, [18F]florbetapir positron emission tomography and MRI of skeletal musculature. Differences in [18F]florbetapir standardised uptake value ratios in skeletal muscle regions of interest were evaluated. Relationships between [18F]florbetapir standardised uptake value ratios and measures of disease severity (clinical and by MRI of skeletal muscle) were assessed. RESULTS: [18F]florbetapir standardised uptake value ratios were significantly higher in those with IBM compared with PM for all assessed regions (total-[18F]florbetapir standardised uptake value ratio 1.45 (1.28 to 2.05) vs 1.01 (0.80 to 1.22), p=0.005). For total-[18F]florbetapir standardised uptake value ratios≥1.28, sensitivity and specificity for IBM was 80% and 100%, respectively. CONCLUSIONS: [18F]florbetapir amyloid positron emission tomography differentiates IBM from PM. Successful development could facilitate accurate diagnosis, inclusion in clinical trials and help avoid unnecessary exposure to potentially harmful treatments. |
---|